Nightly Per-Antenna Quality Summary Notebook¶

Josh Dillon, Last Revised February 2021

This notebooks brings together as much information as possible from ant_metrics, auto_metrics and redcal to help figure out which antennas are working properly and summarizes it in a single giant table. It is meant to be lightweight and re-run as often as necessary over the night, so it can be run when any of those is done and then be updated when another one completes.

In [1]:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
pd.set_option('display.max_rows', 1000)
from hera_qm.metrics_io import load_metric_file
from hera_cal import utils, io, redcal
import glob
import os
import h5py
from copy import deepcopy
from IPython.display import display, HTML
from hera_notebook_templates.utils import status_colors

%matplotlib inline
%config InlineBackend.figure_format = 'retina'
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
# If you want to run this notebook locally, copy the output of the next cell into the first few lines of this cell.

# JD = "2459122"
# data_path = '/lustre/aoc/projects/hera/H4C/2459122'
# ant_metrics_ext = ".ant_metrics.hdf5"
# redcal_ext = ".maybe_good.omni.calfits"
# nb_outdir = '/lustre/aoc/projects/hera/H4C/h4c_software/H4C_Notebooks/_rtp_summary_'
# os.environ["JULIANDATE"] = JD
# os.environ["DATA_PATH"] = data_path
# os.environ["ANT_METRICS_EXT"] = ant_metrics_ext
# os.environ["REDCAL_EXT"] = redcal_ext
# os.environ["NB_OUTDIR"] = nb_outdir
In [3]:
# Use environment variables to figure out path to data
JD = os.environ['JULIANDATE']
data_path = os.environ['DATA_PATH']
ant_metrics_ext = os.environ['ANT_METRICS_EXT']
redcal_ext = os.environ['REDCAL_EXT']
nb_outdir = os.environ['NB_OUTDIR']
print(f'JD = "{JD}"')
print(f'data_path = "{data_path}"')
print(f'ant_metrics_ext = "{ant_metrics_ext}"')
print(f'redcal_ext = "{redcal_ext}"')
print(f'nb_outdir = "{nb_outdir}"')
JD = "2459747"
data_path = "/mnt/sn1/2459747"
ant_metrics_ext = ".ant_metrics.hdf5"
redcal_ext = ".known_good.omni.calfits"
nb_outdir = "/home/obs/src/H5C_Notebooks/_rtp_summary_"
In [4]:
from astropy.time import Time
utc = Time(JD, format='jd').datetime
print(f'Date: {utc.month}-{utc.day}-{utc.year}')
Date: 6-16-2022
In [5]:
# Per-season options
def ant_to_report_url(ant):
    return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/antenna_report/antenna_{ant}_report.html'

Load Auto Metrics¶

In [6]:
use_auto_metrics = False

# find the auto_metrics file
glob_str = os.path.join(data_path, f'zen.{JD}*.auto_metrics.h5')
auto_metrics_file = sorted(glob.glob(glob_str))

# if it exists, load and extract relevant information
if len(auto_metrics_file) > 0:
    auto_metrics_file = auto_metrics_file[0]
    print(f'Found auto_metrics results file at {auto_metrics_file}.')
    
    auto_metrics = load_metric_file(auto_metrics_file)
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
    auto_ex_ants = auto_metrics['ex_ants']['r2_ex_ants']
    
    use_auto_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping auto_metrics.')
Found auto_metrics results file at /mnt/sn1/2459747/zen.2459747.25304.sum.auto_metrics.h5.

Load Ant Metrics¶

In [7]:
use_ant_metrics = False

# get a list of all ant_metrics files
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{ant_metrics_ext}')
ant_metrics_files = sorted(glob.glob(glob_str))

# if they exist, load as many of them as possible
if len(ant_metrics_files) > 0:
    print(f'Found {len(ant_metrics_files)} ant_metrics files matching glob {glob_str}')
    ant_metrics_apriori_exants = {}
    ant_metrics_xants_dict = {}
    ant_metrics_dead_ants_dict = {}
    ant_metrics_crossed_ants_dict = {}
    ant_metrics_dead_metrics = {}
    ant_metrics_crossed_metrics = {}
    dead_cuts = {}
    crossed_cuts = {}
    for amf in ant_metrics_files:
        with h5py.File(amf, "r") as infile: # use h5py directly since it's much faster than load_metric_file
            # get out results for this file
            dead_cuts[amf] = infile['Metrics']['dead_ant_cut'][()]
            crossed_cuts[amf] = infile['Metrics']['cross_pol_cut'][()]
            xants = infile['Metrics']['xants'][:]
            dead_ants = infile['Metrics']['dead_ants'][:]
            crossed_ants = infile['Metrics']['crossed_ants'][:]        
            try:
                # look for ex_ants in history
                ex_ants_string = infile['Header']['history'][()].decode()
                ex_ants_string = ex_ants_string.split('--apriori_xants')[1]
                ex_ants_string = ex_ants_string.split('--')[0].strip()
            except:
                ex_ants_string = ''
                    
            # This only works for the new correlation-matrix-based ant_metrics
            if 'corr' in infile['Metrics']['final_metrics'] and 'corrXPol' in infile['Metrics']['final_metrics']:
                ant_metrics_dead_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corr'][ant][()]
                                                 for ant in infile['Metrics']['final_metrics']['corr']}
                ant_metrics_crossed_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corrXPol'][ant][()]
                                                    for ant in infile['Metrics']['final_metrics']['corrXPol']}                       
            else:
                raise(KeywordError)
        
        # organize results by file
        ant_metrics_xants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in xants]
        ant_metrics_dead_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in dead_ants]
        ant_metrics_crossed_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in crossed_ants]
        ant_metrics_apriori_exants[amf] = [int(ant) for ant in ex_ants_string.split()]
    
    dead_cut = np.median(list(dead_cuts.values()))
    crossed_cut = np.median(list(crossed_cuts.values()))
        
    use_ant_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping ant_metrics.')
Found 372 ant_metrics files matching glob /mnt/sn1/2459747/zen.2459747.?????.sum.ant_metrics.hdf5

Load chi^2 info from redcal¶

In [8]:
use_redcal = False
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{redcal_ext}')

redcal_files = sorted(glob.glob(glob_str))
if len(redcal_files) > 0:
    print(f'Found {len(redcal_files)} ant_metrics files matching glob {glob_str}')
    post_redcal_ant_flags_dict = {}
    flagged_by_redcal_dict = {}
    cspa_med_dict = {}
    for cal in redcal_files:
        hc = io.HERACal(cal)
        _, flags, cspa, chisq = hc.read()
        cspa_med_dict[cal] = {ant: np.nanmedian(cspa[ant], axis=1) for ant in cspa}

        post_redcal_ant_flags_dict[cal] = {ant: np.all(flags[ant]) for ant in flags}
        # check history to distinguish antennas flagged going into redcal from ones flagged during redcal
        tossed_antenna_lines =  hc.history.replace('\n','').split('Throwing out antenna ')[1:]
        flagged_by_redcal_dict[cal] = sorted([int(line.split(' ')[0]) for line in tossed_antenna_lines])
        
    use_redcal = True
else:
    print(f'No files found matching glob {glob_str}. Skipping redcal chisq.')
No files found matching glob /mnt/sn1/2459747/zen.2459747.?????.sum.known_good.omni.calfits. Skipping redcal chisq.

Figure out some general properties¶

In [9]:
# Parse some general array properties, taking into account the fact that we might be missing some of the metrics
ants = []
pols = []
antpol_pairs = []

if use_auto_metrics:
    ants = sorted(set(bl[0] for bl in auto_metrics['modzs']['r2_shape_modzs']))
    pols = sorted(set(bl[2] for bl in auto_metrics['modzs']['r2_shape_modzs']))
if use_ant_metrics:
    antpol_pairs = sorted(set([antpol for dms in ant_metrics_dead_metrics.values() for antpol in dms.keys()]))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))
if use_redcal:
    antpol_pairs = sorted(set([ant for cspa in cspa_med_dict.values() for ant in cspa.keys()]) | set(antpol_pairs))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))

# Figure out remaining antennas not in data
hd = io.HERAData(sorted(glob.glob(os.path.join(data_path, 'zen.*.sum.uvh5')))[0])
unused_ants = [ant for ant in hd.antpos if ant not in ants]    

Load a priori antenna statuses and node numbers¶

In [10]:
# try to load a priori antenna statusesm but fail gracefully if this doesn't work.
a_priori_statuses = {ant: 'Not Found' for ant in ants}
nodes = {ant: np.nan for ant in ants + unused_ants}
try:
    from hera_mc import cm_hookup

    # get node numbers
    hookup = cm_hookup.get_hookup('default')
    for ant_name in hookup:
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in nodes:
            if hookup[ant_name].get_part_from_type('node')['E<ground'] is not None:
                nodes[ant] = int(hookup[ant_name].get_part_from_type('node')['E<ground'][1:])
    
    # get apriori antenna status
    for ant_name, data in hookup.items():
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in a_priori_statuses:
            a_priori_statuses[ant] = data.apriori

except Exception as err:
    print(f'Could not load node numbers and a priori antenna statuses.\nEncountered {type(err)} with message: {err}')

Summarize auto metrics¶

In [11]:
if use_auto_metrics:
    # Parse modzs
    modzs_to_check = {'Shape': 'r2_shape_modzs', 'Power': 'r2_power_modzs', 
                      'Temporal Variability': 'r2_temp_var_modzs', 'Temporal Discontinuties': 'r2_temp_diff_modzs'}
    worst_metrics = []
    worst_zs = []
    all_modzs = {}
    binary_flags = {rationale: [] for rationale in modzs_to_check}

    for ant in ants:
        # parse modzs and figure out flag counts
        modzs = {f'{pol} {rationale}': auto_metrics['modzs'][dict_name][(ant, ant, pol)] 
                 for rationale, dict_name in modzs_to_check.items() for pol in pols}
        for pol in pols:
            for rationale, dict_name in modzs_to_check.items():
                binary_flags[rationale].append(auto_metrics['modzs'][dict_name][(ant, ant, pol)] > mean_round_modz_cut)

        # parse out all metrics for dataframe
        for k in modzs:
            col_label = k + ' Modified Z-Score'
            if col_label in all_modzs:
                all_modzs[col_label].append(modzs[k])
            else:
                all_modzs[col_label] = [modzs[k]]
                
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
else:
    mean_round_modz_cut = 0

Summarize ant metrics¶

In [12]:
if use_ant_metrics:
    a_priori_flag_frac = {ant: np.mean([ant in apxa for apxa in ant_metrics_apriori_exants.values()]) for ant in ants}
    dead_ant_frac = {ap: {ant: np.mean([(ant, ap) in das for das in ant_metrics_dead_ants_dict.values()])
                                 for ant in ants} for ap in antpols}
    crossed_ant_frac = {ant: np.mean([np.any([(ant, ap) in cas for ap in antpols])
                                      for cas in ant_metrics_crossed_ants_dict.values()]) for ant in ants}
    ant_metrics_xants_frac_by_antpol = {antpol: np.mean([antpol in amx for amx in ant_metrics_xants_dict.values()]) for antpol in antpol_pairs}
    ant_metrics_xants_frac_by_ant = {ant: np.mean([np.any([(ant, ap) in amx for ap in antpols])
                                     for amx in ant_metrics_xants_dict.values()]) for ant in ants}
    average_dead_metrics = {ap: {ant: np.nanmean([dm.get((ant, ap), np.nan) for dm in ant_metrics_dead_metrics.values()]) 
                                 for ant in ants} for ap in antpols}
    average_crossed_metrics = {ant: np.nanmean([cm.get((ant, ap), np.nan) for ap in antpols 
                                                for cm in ant_metrics_crossed_metrics.values()]) for ant in ants}
else:
    dead_cut = 0.4
    crossed_cut = 0.0

Summarize redcal chi^2 metrics¶

In [13]:
if use_redcal:
    cspa = {ant: np.nanmedian(np.hstack([cspa_med_dict[cal][ant] for cal in redcal_files])) for ant in antpol_pairs}
    redcal_prior_flag_frac = {ant: np.mean([np.any([afd[ant, ap] and not ant in flagged_by_redcal_dict[cal] for ap in antpols])
                                            for cal, afd in post_redcal_ant_flags_dict.items()]) for ant in ants}
    redcal_flagged_frac = {ant: np.mean([ant in fbr for fbr in flagged_by_redcal_dict.values()]) for ant in ants}

Build DataFrame¶

In [14]:
# build dataframe
to_show = {'Ant': [f'<a href="{ant_to_report_url(ant)}" target="_blank">{ant}</a>' for ant in ants],
           'Node': [nodes[ant] for ant in ants], 
           'A Priori Status': [a_priori_statuses[ant] for ant in ants]}
           #'Worst Metric': worst_metrics, 'Worst Modified Z-Score': worst_zs}
df = pd.DataFrame(to_show)

# create bar chart columns for flagging percentages:
bar_cols = {}
if use_auto_metrics:
    bar_cols['Auto Metrics Flags'] = [float(ant in auto_ex_ants) for ant in ants]
if use_ant_metrics:
    if np.sum(list(a_priori_flag_frac.values())) > 0:  # only include this col if there are any a priori flags
        bar_cols['A Priori Flag Fraction in Ant Metrics'] = [a_priori_flag_frac[ant] for ant in ants]
    for ap in antpols:
        bar_cols[f'Dead Fraction in Ant Metrics ({ap})'] = [dead_ant_frac[ap][ant] for ant in ants]
    bar_cols['Crossed Fraction in Ant Metrics'] = [crossed_ant_frac[ant] for ant in ants]
if use_redcal:
    bar_cols['Flag Fraction Before Redcal'] = [redcal_prior_flag_frac[ant] for ant in ants]
    bar_cols['Flagged By Redcal chi^2 Fraction'] = [redcal_flagged_frac[ant] for ant in ants]  
for col in bar_cols:
    df[col] = bar_cols[col]

# add auto_metrics
if use_auto_metrics:
    for label, modz in all_modzs.items():
        df[label] = modz
z_score_cols = [col for col in df.columns if 'Modified Z-Score' in col]        
        
# add ant_metrics
ant_metrics_cols = {}
if use_ant_metrics:
    for ap in antpols:
        ant_metrics_cols[f'Average Dead Ant Metric ({ap})'] = [average_dead_metrics[ap][ant] for ant in ants]
    ant_metrics_cols['Average Crossed Ant Metric'] = [average_crossed_metrics[ant] for ant in ants]
    for col in ant_metrics_cols:
        df[col] = ant_metrics_cols[col]   

# add redcal chisq
redcal_cols = []
if use_redcal:
    for ap in antpols:
        col_title = f'Median chi^2 Per Antenna ({ap})'
        df[col_title] = [cspa[ant, ap] for ant in ants]
        redcal_cols.append(col_title)

# sort by node number and then by antenna number within nodes
df.sort_values(['Node', 'Ant'], ascending=True)

# style dataframe
table = df.style.hide_index()\
          .applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
          .background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=z_score_cols) \
          .background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=redcal_cols) \
          .applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
          .format({col: '{:,.4f}'.format for col in z_score_cols}) \
          .format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
          .format({col: '{:,.2%}'.format for col in bar_cols}) \
          .applymap(lambda val: 'font-weight: bold', subset=['Ant']) \
          .set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])]) \

Table 1: RTP Per-Antenna Metrics Summary Table¶

This admittedly very busy table incorporates summary information about all antennas in the array. Its columns depend on what information is available when the notebook is run (i.e. whether auto_metrics, ant_metrics, and/or redcal is done). These can be divided into 5 sections:

Basic Antenna Info: antenna number, node, and its a priori status.

Flag Fractions: Fraction of the night that an antenna was flagged for various reasons. Note that auto_metrics flags antennas for the whole night, so it'll be 0% or 100%.

auto_metrics Details: If auto_metrics is included, this section shows the modified Z-score signifying how much of an outlier each antenna and polarization is in each of four categories: bandpass shape, overall power, temporal variability, and temporal discontinuities. Bold red text indicates that this is a reason for flagging the antenna. It is reproduced from the auto_metrics_inspect.ipynb nightly notebook, so check that out for more details on the precise metrics.

ant_metrics Details: If ant_metrics is included, this section shows the average correlation-based metrics for antennas over the whole night. Low "dead ant" metrics (nominally below 0.4) indicate antennas not correlating with the rest of the array. Negative "crossed ant" metrics indicate antennas that show stronger correlations in their cross-pols than their same-pols, indicating that the two polarizations are probably swapped. Bold text indicates that the average is below the threshold for flagging.

redcal chi^2 Details: If redcal is included, this shows the median chi^2 per antenna. This would be 1 in an ideal array. Antennas are thrown out when they they are outliers in their median chi^2, usually greater than 4-sigma outliers in modified Z-score.

In [15]:
HTML(table.render())
Out[15]:
Ant Node A Priori Status Auto Metrics Flags Dead Fraction in Ant Metrics (Jee) Dead Fraction in Ant Metrics (Jnn) Crossed Fraction in Ant Metrics ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score Average Dead Ant Metric (Jee) Average Dead Ant Metric (Jnn) Average Crossed Ant Metric
0 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 23.511026 20.959351 25.494004 30.331580 14582.436824 28302.330179 12472.803064 23342.300962 0.018475 0.016412 0.002364
1 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 30.669152 39.679060 55.628870 53.816357 576.584617 493.573876 2934.606986 2947.593213 0.016182 0.016309 0.000291
2 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 32.499823 29.464367 55.193778 30.054246 225.185655 90.230857 1389.823276 547.518727 0.016233 0.016925 0.000484
3 1 RF_maintenance 0.00% 100.00% 100.00% 0.00% -0.219411 0.491560 -0.337993 -0.233367 -0.953055 0.668633 -0.696920 -0.676805 0.031566 0.031068 0.001662
4 1 RF_maintenance 0.00% 100.00% 100.00% 0.00% -0.118543 0.534442 -0.211326 0.274215 -0.654037 -0.191704 1.138100 0.243922 0.030542 0.032033 0.003072
5 1 digital_ok 0.00% 100.00% 100.00% 0.00% -0.099637 -0.047629 0.015636 0.006508 -0.836003 0.239411 0.290773 -0.423397 0.031718 0.031732 0.001254
7 2 digital_ok 100.00% 100.00% 100.00% 0.00% 2.230664 1.684620 1.620657 1.424495 4.551274 7.273419 10.351050 44.150680 0.098211 0.076511 0.016551
8 2 RF_maintenance 100.00% 8.60% 11.29% 0.00% 22.241307 22.738752 31.187304 32.421763 56.157459 53.569883 50.545096 50.708496 0.604489 0.578736 0.422357
9 2 digital_ok 0.00% 100.00% 100.00% 0.00% -0.540406 -0.845137 -0.928389 -0.848560 0.100502 0.830460 -0.708311 0.040858 0.086254 0.079670 0.008843
10 2 digital_ok 100.00% 100.00% 100.00% 0.00% 3.869021 1.684859 2.418915 1.095669 12.896271 14.179887 65.783344 54.102110 0.030904 0.034247 0.001393
11 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 41.660760 35.042306 48.053434 45.522780 259.897685 241.002373 1492.327692 1460.739650 0.018534 0.017864 0.000666
12 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 29.829444 30.596255 39.009479 41.172703 198.362910 213.714872 1235.204133 1219.084197 0.019255 0.017967 0.001216
13 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 29.532033 32.270518 46.281355 38.860378 324.565598 256.472154 1738.282374 1142.164005 0.018462 0.017877 0.000694
14 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 38.223112 29.915603 58.496939 42.714366 458.620765 345.113286 2894.391060 1880.101922 0.018238 0.017447 0.000738
15 1 digital_ok 0.00% 100.00% 100.00% 0.00% -1.134941 -0.296241 -0.801091 -0.724673 -1.276161 1.474949 -0.623111 1.763704 0.031456 0.029464 0.001333
16 1 digital_ok 0.00% 100.00% 100.00% 0.00% -0.338869 0.679603 -0.604355 -0.006508 0.751005 -0.401485 -0.541866 -0.927473 0.031212 0.030207 0.000634
17 1 digital_ok 100.00% 100.00% 100.00% 0.00% -0.130444 -0.074142 1.206173 1.215747 24.384005 25.126364 124.137298 130.011338 0.028874 0.028747 0.000414
18 1 RF_maintenance 100.00% 100.00% 100.00% 0.00% 16.124958 2.238394 3.223070 15.817475 46.555106 21.718057 175.755141 58.740405 0.032938 0.030931 0.002668
19 2 digital_ok 100.00% 100.00% 100.00% 0.00% 0.748895 2.875483 0.090062 1.566563 7.280792 19.321280 54.468527 18.216326 0.034433 0.043430 0.003625
20 2 digital_ok 0.00% 100.00% 100.00% 0.00% 0.669599 -0.151096 1.409545 0.178504 3.018814 -0.388237 2.459720 -1.413989 0.033633 0.039486 0.002165
21 2 digital_ok 100.00% 100.00% 100.00% 0.00% -0.443020 2.617236 -0.798587 2.504572 50.973650 49.067914 40.404885 39.774958 0.030946 0.030431 0.000935
23 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 26.076074 27.394566 38.475671 33.583319 212.593200 165.815029 1126.408845 856.182414 0.017530 0.017208 0.000552
24 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 27.349759 37.829973 40.804868 52.911671 176.481235 411.007747 1108.261063 1952.473642 0.016617 0.016209 0.000436
25 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 116.587884 116.818428 120.424966 inf 186.994820 545.465358 998.860473 2566.870343 0.031415 nan nan
26 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 117.880662 118.985093 124.423830 inf 301.414812 338.808168 1412.502633 1927.843224 0.021833 nan nan
27 1 RF_maintenance 100.00% 100.00% 100.00% 0.00% 9.372753 2.979187 3.869303 4.354316 0.985458 11.328891 5.650306 39.180567 0.031192 0.033316 0.001726
28 1 RF_maintenance 100.00% 100.00% 100.00% 0.00% 3.411358 1.327920 9.816463 0.903508 -0.468014 0.664280 1.878824 0.717980 0.029815 0.035905 0.001463
29 1 digital_ok 0.00% 100.00% 100.00% 0.00% -0.384254 0.555182 0.042345 0.396566 2.109008 0.615834 0.032565 -1.455202 0.031986 0.031119 0.002020
30 1 digital_ok 100.00% 100.00% 100.00% 0.00% 1.543340 1.423959 0.802050 0.713161 9.835232 4.406216 61.473931 13.584630 0.033310 0.033384 0.002929
31 2 digital_ok 100.00% 100.00% 100.00% 0.00% 3.261089 0.499878 1.179246 -0.576541 1073.662519 952.218800 899.454655 787.195993 0.028616 0.029165 0.000074
32 2 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.555742 -0.064290 0.994733 0.192279 714.101165 853.521957 603.155974 713.048081 0.029152 0.029189 0.000514
33 2 RF_maintenance 100.00% 100.00% 100.00% 0.00% -0.223152 5.411447 -0.638443 13.243345 49.031640 50.548326 40.283033 51.989674 0.075123 0.043044 0.005999
36 3 RF_maintenance 100.00% 100.00% 100.00% 0.00% 1.269596 -0.370954 1.552264 3.381760 5.601688 -0.292083 2.054056 3.420302 0.027363 0.027046 0.000605
37 3 digital_ok 100.00% 100.00% 100.00% 0.00% 2.037138 6.824363 3.152197 4.015120 1.875995 4.688206 1.571453 13.103687 0.027966 0.029572 0.003976
38 3 RF_maintenance 100.00% 100.00% 100.00% 0.00% 1.264908 5.437778 3.199082 5.190898 58.191083 79.997905 224.742607 304.281178 0.026997 0.030793 0.002538
39 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
40 4 digital_ok 100.00% 0.00% 0.00% 0.00% 23.193246 23.587037 25.623916 26.568397 50.413354 33.576141 21.585086 24.475121 0.651378 0.633800 0.414299
41 4 digital_ok 0.00% 100.00% 100.00% 0.00% -0.932500 -0.373192 -0.674189 -0.715592 1.414148 -0.903672 -0.293777 -0.502462 0.039651 0.036973 0.001882
42 4 digital_ok 0.00% 100.00% 100.00% 0.00% 0.954263 0.428036 -0.176139 -0.786798 0.410007 3.238456 -0.480218 -1.254028 0.064996 0.065368 0.007949
45 5 RF_maintenance 100.00% 100.00% 100.00% 0.00% -0.867220 14.056354 -0.852076 6.471029 -0.870063 1.170583 -0.113434 6.143544 0.028439 0.031969 0.002700
46 5 digital_ok 100.00% 100.00% 100.00% 0.00% 0.620161 1.336924 3.329349 3.307104 19.166370 22.559070 61.311280 63.111205 0.028336 0.027976 0.002501
50 3 digital_ok 0.00% 100.00% 100.00% 0.00% 2.285454 2.662197 2.612408 0.341196 -1.086224 -0.818429 1.595839 -0.503459 0.026722 0.027079 0.000657
51 3 digital_ok 100.00% 100.00% 100.00% 0.00% 3.601446 6.056395 0.029982 4.139586 0.145774 2.227610 4.554332 2.278709 0.030288 0.029477 0.004451
52 3 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.642398 0.189141 2.779485 2.557696 6.117730 0.540586 8.702285 5.942423 0.028239 0.026892 0.001028
53 3 digital_ok 100.00% 100.00% 100.00% 0.00% 3.027977 1.480015 -0.100375 0.112974 2.360642 7.209534 17.878239 20.511103 0.031763 0.031883 -0.000801
54 4 digital_ok 100.00% 100.00% 100.00% 0.00% -0.853320 -0.473368 -0.902544 0.055705 0.458901 1.749587 0.470434 4.873590 0.061967 0.068690 0.005401
55 4 digital_ok 0.00% 100.00% 100.00% 0.00% -1.083597 -0.607196 -0.684454 -0.277296 -0.236178 0.506450 -0.570031 2.895047 0.032866 0.049474 0.001607
56 4 digital_ok 0.00% 100.00% 100.00% 0.00% -0.204327 0.575180 -0.382869 0.920377 1.996592 0.463356 2.544442 1.761302 0.037694 0.054801 0.005940
57 4 digital_ok 100.00% 100.00% 100.00% 0.00% 8.612352 1.598952 2.719675 2.473277 1.395459 7.092450 -0.331118 4.458456 0.042778 0.036332 0.003816
65 3 digital_ok 100.00% 100.00% 100.00% 0.00% 4.407905 3.234024 0.619997 1.015543 1.021444 10.167659 1.140626 2.608232 0.029251 0.029576 0.001017
66 3 digital_ok 100.00% 100.00% 100.00% 0.00% 5.802131 3.448443 10.235310 5.234243 47.418603 48.201264 192.591010 177.913132 0.028837 0.028939 0.000570
67 3 RF_maintenance 100.00% 100.00% 100.00% 0.00% 1.506138 -0.468952 3.174842 6.207376 -0.661461 2.940022 3.470440 7.782812 0.027750 0.029551 0.001137
68 3 digital_ok 100.00% 100.00% 100.00% 0.00% 5.526654 2.504283 0.833627 1.873705 0.986160 -0.706889 0.665629 0.196415 0.029768 0.030790 0.001619
69 4 digital_ok 100.00% 100.00% 100.00% 0.00% 0.169465 0.477667 0.227161 -0.351006 0.803429 20.263860 1.220272 4.020100 0.040228 0.048463 0.005385
70 4 RF_maintenance 100.00% 0.00% 0.00% 0.00% 27.410945 24.365221 18.090324 17.944488 64.598632 66.196564 48.049969 59.996644 0.682274 0.662779 0.393987
71 4 digital_ok 100.00% 100.00% 100.00% 0.00% 2.296410 2.834172 3.842813 4.580855 1.868810 0.765799 2.732547 0.569854 0.034214 0.040708 0.004700
72 4 digital_ok 100.00% 0.00% 0.00% 0.00% 21.105963 23.640910 26.139960 28.125541 44.970460 29.881385 20.762037 20.025258 0.664656 0.661335 0.377437
73 5 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.437616 4.786197 2.149418 0.343885 15.851647 7.068995 24.238199 14.861950 0.028368 0.033455 0.002072
81 7 digital_ok 0.00% 100.00% 100.00% 0.00% 1.801361 0.133341 0.983234 1.439675 -0.922675 0.362519 -1.213818 0.672176 0.043846 0.032791 0.004144
82 7 RF_maintenance 100.00% 100.00% 100.00% 0.00% 2.326466 3.466603 1.210735 -0.030830 3.151515 2.979111 13.525421 10.515332 0.052893 0.040958 0.008963
83 7 digital_ok 100.00% 100.00% 100.00% 0.00% 14.017043 13.907373 3.205155 3.454588 0.263793 0.161274 5.817488 5.315608 0.057973 0.051801 0.015714
84 8 digital_ok 0.00% 100.00% 100.00% 0.00% 0.077835 0.112807 -0.378448 0.518086 -0.368049 -0.779510 0.391039 1.026564 0.030994 0.028625 0.001556
85 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
86 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
87 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 3.212785 4.202156 4.177656 10.411032 10.605926 10.000412 0.726674 0.238789 0.030746 0.029302 0.001027
88 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
89 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
90 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
91 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
92 10 digital_ok 100.00% 100.00% 100.00% 0.00% 15.408187 14.491232 6.103888 6.756439 -0.161412 0.451397 3.823063 4.553116 0.040504 0.065228 0.009297
93 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% -0.954556 13.829358 -0.559092 7.317073 3.268530 1.147650 2.503398 12.001932 0.041394 0.068445 0.023872
94 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.658566 3.479528 0.617347 2.108413 -1.023784 7.379096 2.146054 1.173186 0.045930 0.066308 0.020350
98 7 digital_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
99 7 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
100 7 RF_maintenance 100.00% 100.00% 100.00% 0.00% 14.438130 14.081807 2.818980 3.988371 0.433110 0.627644 7.725343 10.081438 0.038736 0.047799 0.003078
101 8 digital_ok 100.00% 100.00% 100.00% 0.00% -0.198612 1.634695 1.279003 2.591888 4.003981 0.773097 23.493784 5.345220 0.031999 0.028440 0.002574
102 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
103 8 digital_ok 0.00% 100.00% 100.00% 0.00% 0.039302 1.648033 3.405463 3.844638 1.973783 -0.116023 3.106317 2.533727 0.025635 0.025332 0.000469
104 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.006909 35.619791 1.735535 31.388433 -0.652807 90.713886 2.285976 297.092145 0.026431 0.018222 0.008023
105 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
106 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
107 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
108 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
109 10 digital_ok 0.00% 100.00% 100.00% 0.00% -0.427524 0.679383 -0.903883 0.515826 -0.951018 0.770273 0.019111 -1.342188 0.045742 0.088907 0.004478
110 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 3.346685 4.114219 0.514228 0.236451 0.782174 7.161999 0.460414 0.897740 0.027337 0.036526 0.003747
111 10 digital_ok 100.00% 100.00% 100.00% 0.00% 0.687211 -0.219869 0.254436 -0.185576 -1.313277 14.475111 -0.264327 1.922497 0.029480 0.035923 0.002450
112 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.313872 13.243201 0.049080 7.118214 -0.792134 -0.097350 -0.154291 4.067425 0.034007 0.094566 0.003566
116 7 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
119 7 RF_maintenance 100.00% 100.00% 100.00% 0.00% 14.086354 0.149938 2.150285 1.896396 0.620736 -0.825240 4.814805 2.297962 0.055834 0.044607 0.014412
120 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 3.252170 9.208779 4.549547 9.816739 3.653167 0.355586 5.784880 9.747791 0.030345 0.024404 0.005047
121 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 3.509168 3.348235 2.144323 0.940546 12.221376 7.185162 53.105286 48.323425 0.031140 0.028952 0.000780
122 8 digital_ok 0.00% 100.00% 100.00% 0.00% 1.070123 0.201781 3.386200 1.463736 0.095141 0.110907 2.811313 1.628313 0.026164 0.027936 0.001919
123 8 digital_ok 0.00% 100.00% 100.00% 0.00% 1.571534 2.050320 0.348191 1.644719 -0.327430 -1.140528 0.258806 -0.155640 0.030558 0.029095 0.001167
124 9 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
125 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
126 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
127 10 RF_maintenance 0.00% 100.00% 100.00% 0.00% 1.818580 1.152392 0.794235 0.480746 -0.719210 2.776891 -0.532942 -0.523652 0.042837 0.088771 0.003988
128 10 digital_ok 0.00% 100.00% 100.00% 0.00% -0.039302 -0.717994 -0.387806 -0.705883 0.696850 0.160935 0.100076 -0.225485 0.041616 0.059855 0.005456
129 10 digital_ok 100.00% 0.00% 0.00% 0.00% 22.634586 23.962946 22.086745 26.600858 64.094722 35.539345 33.578334 25.339232 0.712373 0.705007 0.370887
130 10 digital_maintenance 100.00% 100.00% 100.00% 0.00% 15.061117 7.263896 6.392590 11.794151 -0.619201 5.455954 3.591400 8.379329 0.043093 0.051719 0.007896
135 12 digital_ok 0.00% 100.00% 100.00% 0.00% -0.817817 -0.817521 -0.759679 -0.868901 -0.586539 -0.298955 1.413023 1.699310 0.034815 0.031324 0.003461
136 12 RF_maintenance 0.00% 100.00% 100.00% 0.00% -0.447187 -0.757848 0.095711 -0.152224 1.451370 0.554059 0.493005 1.209882 0.030332 0.036385 0.001014
138 7 digital_ok 0.00% 100.00% 100.00% 0.00% 2.234262 1.660522 1.932986 1.242848 -0.317807 -0.844006 -0.489393 -0.353585 0.055952 0.056733 0.009373
140 13 digital_ok 100.00% 100.00% 100.00% 0.00% 2.617784 3.100827 6.270507 5.884443 56.670094 57.703516 233.462216 235.976404 0.033364 0.029021 0.000788
141 13 digital_ok 100.00% 100.00% 100.00% 0.00% -0.438764 9.044574 -0.205737 5.152432 -0.745851 1.745914 1.401593 16.186527 0.035503 0.030220 0.000509
142 13 digital_ok 100.00% 100.00% 100.00% 0.00% 1.210982 13.132007 1.043181 6.876996 -0.477441 -0.505923 2.206171 2.895767 0.037318 0.031847 0.001036
143 14 digital_ok 100.00% 0.00% 0.00% 0.00% 21.967775 23.548258 27.661320 27.826402 42.677009 33.576227 14.549729 20.923167 0.648440 0.648550 0.395791
144 14 digital_ok 100.00% 100.00% 100.00% 0.00% 4.991581 3.933309 2.206963 2.062515 0.212707 -0.370318 3.361707 2.747892 0.033467 0.033951 0.001009
145 14 digital_ok 0.00% 100.00% 100.00% 0.00% 2.138835 -0.984159 1.124570 -0.920481 -0.084323 -0.401598 1.370263 0.562995 0.030958 0.038898 0.004268
150 15 RF_maintenance 100.00% 100.00% 100.00% 0.00% 14.214169 13.308243 6.598252 7.757081 0.531159 1.699900 6.999290 10.143412 0.156200 0.156392 0.020190
155 12 RF_maintenance 100.00% 100.00% 100.00% 0.00% 14.900113 14.642363 6.023007 6.640458 0.554263 1.346400 6.765630 8.548033 0.035071 0.037137 0.000809
156 12 RF_maintenance 100.00% 100.00% 100.00% 0.00% -0.477938 -0.879402 -0.358949 -0.597711 1.408109 1.150755 -0.692632 7.928092 0.034940 0.037750 0.001847
157 12 RF_maintenance 0.00% 100.00% 100.00% 0.00% 0.882051 0.165099 1.938556 -0.643879 1.263724 1.255798 0.397398 -1.067593 0.033785 0.036180 0.001374
158 12 RF_maintenance 0.00% 100.00% 100.00% 0.00% 0.190981 -0.287182 -0.094782 0.567469 -0.651107 0.989564 -0.923543 1.779768 0.034661 0.035254 0.002049
160 13 digital_ok 0.00% 100.00% 100.00% 0.00% 1.182545 0.250660 1.303997 0.188799 0.437640 0.422057 -0.743887 3.581748 0.031911 0.031706 0.001341
161 13 digital_ok 0.00% 100.00% 100.00% 0.00% -0.947444 -0.725109 -0.752028 -0.408790 -0.370321 -0.725510 0.220409 0.092366 0.042198 0.031931 0.001647
162 13 digital_ok 0.00% 100.00% 100.00% 0.00% -0.771494 -0.568291 -0.865088 -0.856635 -1.226804 0.394440 -0.087486 -0.019111 0.107372 0.040806 0.019474
163 14 digital_ok 100.00% 100.00% 100.00% 0.00% -0.219877 -0.901915 -0.226250 -0.729256 3.005797 6.258262 7.164787 9.046824 0.036930 0.038570 0.004713
164 14 digital_ok 100.00% 100.00% 100.00% 0.00% 0.033418 0.284902 -0.114069 -0.482250 -0.793091 4.543803 0.154185 -0.062168 0.042891 0.054357 0.011457
165 14 digital_ok 0.00% 100.00% 100.00% 0.00% -1.124083 -0.693043 -0.261208 0.091546 0.035706 0.286542 -0.938096 -0.689039 0.029876 0.031002 0.000497
166 14 RF_maintenance 0.00% 100.00% 100.00% 0.00% 2.156513 2.188071 0.664277 0.589371 1.048761 -1.316180 -0.668241 -0.547142 0.029232 0.030789 0.001270
167 15 digital_ok 100.00% 0.00% 0.00% 0.00% 11.918635 16.437704 30.148264 31.739884 91.760648 40.721986 55.193747 31.545499 0.563035 0.597419 0.152080
168 15 RF_maintenance 100.00% 0.00% 0.00% 0.00% 22.244756 22.570278 31.755266 34.018716 22.926272 12.553662 3.002907 3.475623 0.739911 0.733310 0.320395
169 15 digital_ok 100.00% 0.00% 0.00% 0.00% 22.221715 22.275234 33.264023 33.074117 15.358023 13.641587 2.560910 6.547087 0.713223 0.712451 0.349470
170 15 digital_ok 100.00% 0.00% 0.00% 0.00% 21.960104 22.222865 33.471305 32.431011 15.026370 16.624972 4.343059 9.223517 0.685543 0.702309 0.345746
176 12 digital_ok 0.00% 100.00% 100.00% 0.00% 1.044948 -0.612385 1.258708 -0.818931 -0.680349 -1.426771 -1.394068 -1.619276 0.035632 0.034398 0.003079
177 12 digital_ok 100.00% 100.00% 100.00% 0.00% -0.588300 1.342251 -0.540037 1.802571 0.048739 9.565260 0.816284 14.869869 0.038540 0.036399 0.002753
178 12 digital_ok 100.00% 100.00% 100.00% 0.00% 1.087198 2.413678 2.773097 5.336323 51.995709 58.989679 114.673981 129.581457 0.038781 0.036738 0.002342
179 12 digital_ok 100.00% 100.00% 100.00% 0.00% 0.989076 0.139608 0.481079 -0.788368 18.379062 -0.962277 4.843922 -0.795978 0.037630 0.036515 0.003970
180 13 RF_maintenance 100.00% 100.00% 100.00% 0.00% 0.628185 14.007158 -0.172480 7.112023 3.929360 0.403578 19.017949 4.335920 0.031740 0.030078 0.001462
181 13 digital_ok 100.00% 100.00% 100.00% 0.00% 5.722726 1.689899 3.000392 1.264197 -0.572751 0.154234 0.378113 2.229170 0.031778 0.032542 0.001142
182 13 RF_maintenance 100.00% 0.00% 0.00% 0.00% 22.420407 24.450366 31.595389 18.296904 22.528806 55.432955 3.967787 197.813397 0.629041 0.638290 0.414624
183 13 digital_ok 100.00% 100.00% 100.00% 0.00% -0.656028 0.260291 -0.583305 0.282375 -1.324623 2.532810 -0.547766 5.536450 0.031417 0.031610 0.001439
184 14 digital_ok 100.00% 100.00% 100.00% 0.00% 0.688407 0.166785 2.333679 1.942029 27.059048 27.675552 96.619669 95.577705 0.029404 0.030584 0.000224
185 14 digital_ok 100.00% 100.00% 100.00% 0.00% 2.584639 2.262533 10.250323 10.237613 8.496863 5.522605 46.465304 19.963343 0.038247 0.033979 0.002549
186 14 digital_ok 0.00% 100.00% 100.00% 0.00% -0.571689 0.066369 -0.832869 -0.405266 -0.375679 -0.836204 2.848710 1.353904 0.035021 0.037652 0.003665
187 14 digital_ok 100.00% 100.00% 100.00% 0.00% -0.165791 0.209595 -0.388183 -0.396434 3.789496 8.435859 4.176368 30.021857 0.034438 0.033077 0.001304
189 15 digital_ok 100.00% 100.00% 100.00% 0.00% -0.173193 -0.672437 -0.753066 -0.705921 1.237321 1.539666 6.347080 9.871569 0.035146 0.036517 0.001052
190 15 digital_ok 0.00% 100.00% 100.00% 0.00% -0.544872 -0.412531 -0.778054 0.674792 0.229245 -0.035706 -0.497884 0.467420 0.034110 0.039113 0.002903
191 15 digital_ok 0.00% 100.00% 100.00% 0.00% 0.829796 -0.990518 0.129847 -0.338331 0.792583 -0.295107 -0.255249 0.218587 0.036473 0.039234 0.002729
220 18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
221 18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
222 18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
320 3 dish_maintenance 100.00% 100.00% 100.00% 0.00% 12.314189 13.147109 1.390840 1.541825 1.010854 0.226555 10.233984 2.919764 0.031086 0.033352 0.001236
321 2 not_connected 100.00% 19.35% 22.04% 0.00% 22.452872 23.298170 30.750105 31.417266 27.700672 17.417340 5.631463 4.738568 0.496570 0.487832 0.365315
323 2 not_connected 100.00% 100.00% 100.00% 0.00% 5.251968 1.062538 7.949844 14.667936 0.275983 0.938447 4.650169 3.802935 0.088748 0.049173 0.015091
324 4 not_connected 100.00% 100.00% 100.00% 0.00% 3.455410 3.123397 18.667913 19.414239 -1.099954 -1.007937 -1.770294 -1.447628 0.042705 0.033785 0.000966
329 12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 7.368817 1.421560 7.575284 13.152283 -0.200805 2.299595 3.416482 7.615277 0.031938 0.032243 0.001640
333 12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 13.559600 0.525514 5.630776 10.257516 3.516155 8.981820 6.653649 17.147421 0.037172 0.037174 0.003834
In [16]:
# print ex_ants for easy copy-pasting to YAML file
proposed_ex_ants = [ant for i, ant in enumerate(ants) if np.any([col[i] > .1 for col in bar_cols.values()])]
print('ex_ants: [' + ", ".join(str(ant) for ant in proposed_ex_ants) + ']')
ex_ants: [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 135, 136, 138, 140, 141, 142, 143, 144, 145, 150, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189, 190, 191, 220, 221, 222, 320, 321, 323, 324, 329, 333]
In [17]:
# write to csv
outpath = os.path.join(nb_outdir, f'rtp_summary_table_{JD}.csv')
print(f'Now saving Table 1 to a csv at {outpath}')
df.to_csv(outpath)
Now saving Table 1 to a csv at /home/obs/src/H5C_Notebooks/_rtp_summary_/rtp_summary_table_2459747.csv
In [18]:
# Load antenna positions
data_list = sorted(glob.glob(os.path.join(data_path, f'zen.{JD}.?????.sum.uvh5')))
hd = io.HERAData(data_list[len(data_list) // 2])

# Figure out where to draw the nodes
node_centers = {}
for node in sorted(set(list(nodes.values()))):
    if np.isfinite(node):
        this_node_ants = [ant for ant in ants + unused_ants if nodes[ant] == node]
        if len(this_node_ants) == 1:
            # put the node label just to the west of the lone antenna 
            node_centers[node] = hd.antpos[ant][node] + np.array([-14.6 / 2, 0, 0])
        else:
            # put the node label between the two antennas closest to the node center
            node_centers[node] = np.mean([hd.antpos[ant] for ant in this_node_ants], axis=0)
            closest_two_pos = sorted([hd.antpos[ant] for ant in this_node_ants], 
                                     key=lambda pos: np.linalg.norm(pos - node_centers[node]))[0:2]
            node_centers[node] = np.mean(closest_two_pos, axis=0)
In [19]:
def Plot_Array(ants, unused_ants, outriggers):
    plt.figure(figsize=(16,16))
    
    plt.scatter(np.array([hd.antpos[ant][0] for ant in hd.data_ants if ant in ants]), 
                np.array([hd.antpos[ant][1] for ant in hd.data_ants if ant in ants]), c='w', s=0)

    # connect every antenna to their node
    for ant in ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', zorder=0)

    rc_color = '#0000ff'
    antm_color = '#ffa500'
    autom_color = '#ff1493'

    # Plot 
    unflagged_ants = []
    for i, ant in enumerate(ants):
        ant_has_flag = False
        # plot large blue annuli for redcal flags
        if use_redcal:
            if redcal_flagged_frac[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=7 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=rc_color, alpha=redcal_flagged_frac[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot medium green annuli for ant_metrics flags
        if use_ant_metrics: 
            if ant_metrics_xants_frac_by_ant[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=antm_color, alpha=ant_metrics_xants_frac_by_ant[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot small red annuli for auto_metrics
        if use_auto_metrics:
            if ant in auto_ex_ants:
                ant_has_flag = True                
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, lw=0, color=autom_color)) 
        
        # plot black/white circles with black outlines for antennas
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4 * (2 - 1 * float(not outriggers)), fill=True, color=['w', 'k'][ant_has_flag], ec='k'))
        if not ant_has_flag:
            unflagged_ants.append(ant)

        # label antennas, using apriori statuses if available
        try:
            bgc = matplotlib.colors.to_rgb(status_colors[a_priori_statuses[ant]])
            c = 'black' if (bgc[0]*0.299 + bgc[1]*0.587 + bgc[2]*0.114) > 186 / 256 else 'white'
        except:
            c = 'k'
            bgc='white'
        plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color=c, backgroundcolor=bgc)

    # label nodes
    for node in sorted(set(list(nodes.values()))):
        if not np.isnan(node) and not np.all(np.isnan(node_centers[node])):
            plt.text(node_centers[node][0], node_centers[node][1], str(node), va='center', ha='center', bbox={'color': 'w', 'ec': 'k'})
    
    # build legend 
    legend_objs = []
    legend_labels = []
    
    # use circles for annuli 
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgecolor='k', markerfacecolor='w', markersize=13))
    legend_labels.append(f'{len(unflagged_ants)} / {len(ants)} Total {["Core", "Outrigger"][outriggers]} Antennas Never Flagged')
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='k', markersize=15))
    legend_labels.append(f'{len(ants) - len(unflagged_ants)} Antennas {["Core", "Outrigger"][outriggers]} Flagged for Any Reason')

    if use_auto_metrics:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=autom_color, markersize=15))
        legend_labels.append(f'{len([ant for ant in auto_ex_ants if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas Flagged by Auto Metrics')
    if use_ant_metrics: 
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=antm_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum([frac for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants]), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Ant Metrics\n(alpha indicates fraction of time)')        
    if use_redcal:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=rc_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum(list(redcal_flagged_frac.values())), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in redcal_flagged_frac.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Redcal\n(alpha indicates fraction of time)')

    # use rectangular patches for a priori statuses that appear in the array
    for aps in sorted(list(set(list(a_priori_statuses.values())))):
        if aps != 'Not Found':
            legend_objs.append(plt.Circle((0, 0), radius=7, fill=True, color=status_colors[aps]))
            legend_labels.append(f'A Priori Status:\n{aps} ({[status for ant, status in a_priori_statuses.items() if ant in ants].count(aps)} {["Core", "Outrigger"][outriggers]} Antennas)')

    # label nodes as a white box with black outline
    if len(node_centers) > 0:
        legend_objs.append(matplotlib.patches.Patch(facecolor='w', edgecolor='k'))
        legend_labels.append('Node Number')

    if len(unused_ants) > 0:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='grey', markersize=15, alpha=.2))
        legend_labels.append(f'Anntenna Not In Data')
        
    
    plt.legend(legend_objs, legend_labels, ncol=2, fontsize='large', framealpha=1)
    
    if outriggers:
        pass
    else:
        plt.xlim([-200, 150])
        plt.ylim([-150, 150])        
       
    # set axis equal and label everything
    plt.axis('equal')
    plt.tight_layout()
    plt.title(f'Summary of {["Core", "Outrigger"][outriggers]} Antenna Statuses and Metrics on {JD}', size=20)    
    plt.xlabel("Antenna East-West Position (meters)", size=12)
    plt.ylabel("Antenna North-South Position (meters)", size=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    xlim = plt.gca().get_xlim()
    ylim = plt.gca().get_ylim()    
        
    # plot unused antennas
    plt.autoscale(False)    
    for ant in unused_ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', alpha=.2, zorder=0)
        
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='w', ec=None, alpha=1, zorder=0))
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='grey', ec=None, alpha=.2, zorder=0))
        if hd.antpos[ant][0] < xlim[1] and hd.antpos[ant][0] > xlim[0]:
            if hd.antpos[ant][1] < ylim[1] and hd.antpos[ant][1] > ylim[0]:
                plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color='k', alpha=.2) 

Figure 1: Array Plot of Flags and A Priori Statuses¶

This plot shows all antennas, which nodes they are connected to, and their a priori statuses (as the highlight text of their antenna numbers). It may also show (depending on what is finished running):

  • Whether they were flagged by auto_metrics (red circle) for bandpass shape, overall power, temporal variability, or temporal discontinuities. This is done in a binary fashion for the whole night.
  • Whether they were flagged by ant_metrics (green circle) as either dead (on either polarization) or crossed, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.
  • Whether they were flagged by redcal (blue circle) for high chi^2, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.

Note that the last fraction does not include antennas that were flagged before going into redcal due to their a priori status, for example.

In [20]:
core_ants = [ant for ant in ants if ant < 320]
outrigger_ants = [ant for ant in ants if ant >= 320]
Plot_Array(ants=core_ants, unused_ants=unused_ants, outriggers=False)
if len(outrigger_ants) > 0:
    Plot_Array(ants=outrigger_ants, unused_ants=sorted(set(unused_ants + core_ants)), outriggers=True)

Metadata¶

In [21]:
from hera_qm import __version__
print(__version__)
from hera_cal import __version__
print(__version__)
2.0.2
3.1.1.dev2+g1b5039f
In [ ]: