Nightly Per-Antenna Quality Summary Notebook¶

Josh Dillon, Last Revised February 2021

This notebooks brings together as much information as possible from ant_metrics, auto_metrics and redcal to help figure out which antennas are working properly and summarizes it in a single giant table. It is meant to be lightweight and re-run as often as necessary over the night, so it can be run when any of those is done and then be updated when another one completes.

In [1]:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
pd.set_option('display.max_rows', 1000)
from hera_qm.metrics_io import load_metric_file
from hera_cal import utils, io, redcal
import glob
import os
import h5py
from copy import deepcopy
from IPython.display import display, HTML
from hera_notebook_templates.utils import status_colors

%matplotlib inline
%config InlineBackend.figure_format = 'retina'
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
# If you want to run this notebook locally, copy the output of the next cell into the first few lines of this cell.

# JD = "2459122"
# data_path = '/lustre/aoc/projects/hera/H4C/2459122'
# ant_metrics_ext = ".ant_metrics.hdf5"
# redcal_ext = ".maybe_good.omni.calfits"
# nb_outdir = '/lustre/aoc/projects/hera/H4C/h4c_software/H4C_Notebooks/_rtp_summary_'
# os.environ["JULIANDATE"] = JD
# os.environ["DATA_PATH"] = data_path
# os.environ["ANT_METRICS_EXT"] = ant_metrics_ext
# os.environ["REDCAL_EXT"] = redcal_ext
# os.environ["NB_OUTDIR"] = nb_outdir
In [3]:
# Use environment variables to figure out path to data
JD = os.environ['JULIANDATE']
data_path = os.environ['DATA_PATH']
ant_metrics_ext = os.environ['ANT_METRICS_EXT']
redcal_ext = os.environ['REDCAL_EXT']
nb_outdir = os.environ['NB_OUTDIR']
print(f'JD = "{JD}"')
print(f'data_path = "{data_path}"')
print(f'ant_metrics_ext = "{ant_metrics_ext}"')
print(f'redcal_ext = "{redcal_ext}"')
print(f'nb_outdir = "{nb_outdir}"')
JD = "2459763"
data_path = "/mnt/sn1/2459763"
ant_metrics_ext = ".ant_metrics.hdf5"
redcal_ext = ".known_good.omni.calfits"
nb_outdir = "/home/obs/src/H5C_Notebooks/_rtp_summary_"
In [4]:
from astropy.time import Time
utc = Time(JD, format='jd').datetime
print(f'Date: {utc.month}-{utc.day}-{utc.year}')
Date: 7-2-2022
In [5]:
# Per-season options
def ant_to_report_url(ant):
    return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/antenna_report/antenna_{ant}_report.html'

Load Auto Metrics¶

In [6]:
use_auto_metrics = False

# find the auto_metrics file
glob_str = os.path.join(data_path, f'zen.{JD}*.auto_metrics.h5')
auto_metrics_file = sorted(glob.glob(glob_str))

# if it exists, load and extract relevant information
if len(auto_metrics_file) > 0:
    auto_metrics_file = auto_metrics_file[0]
    print(f'Found auto_metrics results file at {auto_metrics_file}.')
    
    auto_metrics = load_metric_file(auto_metrics_file)
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
    auto_ex_ants = auto_metrics['ex_ants']['r2_ex_ants']
    
    use_auto_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping auto_metrics.')
Found auto_metrics results file at /mnt/sn1/2459763/zen.2459763.25307.sum.auto_metrics.h5.

Load Ant Metrics¶

In [7]:
use_ant_metrics = False

# get a list of all ant_metrics files
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{ant_metrics_ext}')
ant_metrics_files = sorted(glob.glob(glob_str))

# if they exist, load as many of them as possible
if len(ant_metrics_files) > 0:
    print(f'Found {len(ant_metrics_files)} ant_metrics files matching glob {glob_str}')
    ant_metrics_apriori_exants = {}
    ant_metrics_xants_dict = {}
    ant_metrics_dead_ants_dict = {}
    ant_metrics_crossed_ants_dict = {}
    ant_metrics_dead_metrics = {}
    ant_metrics_crossed_metrics = {}
    dead_cuts = {}
    crossed_cuts = {}
    for amf in ant_metrics_files:
        with h5py.File(amf, "r") as infile: # use h5py directly since it's much faster than load_metric_file
            # get out results for this file
            dead_cuts[amf] = infile['Metrics']['dead_ant_cut'][()]
            crossed_cuts[amf] = infile['Metrics']['cross_pol_cut'][()]
            xants = infile['Metrics']['xants'][:]
            dead_ants = infile['Metrics']['dead_ants'][:]
            crossed_ants = infile['Metrics']['crossed_ants'][:]        
            try:
                # look for ex_ants in history
                ex_ants_string = infile['Header']['history'][()].decode()
                ex_ants_string = ex_ants_string.split('--apriori_xants')[1]
                ex_ants_string = ex_ants_string.split('--')[0].strip()
            except:
                ex_ants_string = ''
                    
            # This only works for the new correlation-matrix-based ant_metrics
            if 'corr' in infile['Metrics']['final_metrics'] and 'corrXPol' in infile['Metrics']['final_metrics']:
                ant_metrics_dead_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corr'][ant][()]
                                                 for ant in infile['Metrics']['final_metrics']['corr']}
                ant_metrics_crossed_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corrXPol'][ant][()]
                                                    for ant in infile['Metrics']['final_metrics']['corrXPol']}                       
            else:
                raise(KeywordError)
        
        # organize results by file
        ant_metrics_xants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in xants]
        ant_metrics_dead_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in dead_ants]
        ant_metrics_crossed_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in crossed_ants]
        ant_metrics_apriori_exants[amf] = [int(ant) for ant in ex_ants_string.split()]
    
    dead_cut = np.median(list(dead_cuts.values()))
    crossed_cut = np.median(list(crossed_cuts.values()))
        
    use_ant_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping ant_metrics.')
Found 12 ant_metrics files matching glob /mnt/sn1/2459763/zen.2459763.?????.sum.ant_metrics.hdf5

Load chi^2 info from redcal¶

In [8]:
use_redcal = False
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{redcal_ext}')

redcal_files = sorted(glob.glob(glob_str))
if len(redcal_files) > 0:
    print(f'Found {len(redcal_files)} ant_metrics files matching glob {glob_str}')
    post_redcal_ant_flags_dict = {}
    flagged_by_redcal_dict = {}
    cspa_med_dict = {}
    for cal in redcal_files:
        hc = io.HERACal(cal)
        _, flags, cspa, chisq = hc.read()
        cspa_med_dict[cal] = {ant: np.nanmedian(cspa[ant], axis=1) for ant in cspa}

        post_redcal_ant_flags_dict[cal] = {ant: np.all(flags[ant]) for ant in flags}
        # check history to distinguish antennas flagged going into redcal from ones flagged during redcal
        tossed_antenna_lines =  hc.history.replace('\n','').split('Throwing out antenna ')[1:]
        flagged_by_redcal_dict[cal] = sorted([int(line.split(' ')[0]) for line in tossed_antenna_lines])
        
    use_redcal = True
else:
    print(f'No files found matching glob {glob_str}. Skipping redcal chisq.')
Found 2 ant_metrics files matching glob /mnt/sn1/2459763/zen.2459763.?????.sum.known_good.omni.calfits

Figure out some general properties¶

In [9]:
# Parse some general array properties, taking into account the fact that we might be missing some of the metrics
ants = []
pols = []
antpol_pairs = []

if use_auto_metrics:
    ants = sorted(set(bl[0] for bl in auto_metrics['modzs']['r2_shape_modzs']))
    pols = sorted(set(bl[2] for bl in auto_metrics['modzs']['r2_shape_modzs']))
if use_ant_metrics:
    antpol_pairs = sorted(set([antpol for dms in ant_metrics_dead_metrics.values() for antpol in dms.keys()]))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))
if use_redcal:
    antpol_pairs = sorted(set([ant for cspa in cspa_med_dict.values() for ant in cspa.keys()]) | set(antpol_pairs))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))

# Figure out remaining antennas not in data
hd = io.HERAData(sorted(glob.glob(os.path.join(data_path, 'zen.*.sum.uvh5')))[0])
unused_ants = [ant for ant in hd.antpos if ant not in ants]    

Load a priori antenna statuses and node numbers¶

In [10]:
# try to load a priori antenna statusesm but fail gracefully if this doesn't work.
a_priori_statuses = {ant: 'Not Found' for ant in ants}
nodes = {ant: np.nan for ant in ants + unused_ants}
try:
    from hera_mc import cm_hookup

    # get node numbers
    hookup = cm_hookup.get_hookup('default')
    for ant_name in hookup:
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in nodes:
            if hookup[ant_name].get_part_from_type('node')['E<ground'] is not None:
                nodes[ant] = int(hookup[ant_name].get_part_from_type('node')['E<ground'][1:])
    
    # get apriori antenna status
    for ant_name, data in hookup.items():
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in a_priori_statuses:
            a_priori_statuses[ant] = data.apriori

except Exception as err:
    print(f'Could not load node numbers and a priori antenna statuses.\nEncountered {type(err)} with message: {err}')

Summarize auto metrics¶

In [11]:
if use_auto_metrics:
    # Parse modzs
    modzs_to_check = {'Shape': 'r2_shape_modzs', 'Power': 'r2_power_modzs', 
                      'Temporal Variability': 'r2_temp_var_modzs', 'Temporal Discontinuties': 'r2_temp_diff_modzs'}
    worst_metrics = []
    worst_zs = []
    all_modzs = {}
    binary_flags = {rationale: [] for rationale in modzs_to_check}

    for ant in ants:
        # parse modzs and figure out flag counts
        modzs = {f'{pol} {rationale}': auto_metrics['modzs'][dict_name][(ant, ant, pol)] 
                 for rationale, dict_name in modzs_to_check.items() for pol in pols}
        for pol in pols:
            for rationale, dict_name in modzs_to_check.items():
                binary_flags[rationale].append(auto_metrics['modzs'][dict_name][(ant, ant, pol)] > mean_round_modz_cut)

        # parse out all metrics for dataframe
        for k in modzs:
            col_label = k + ' Modified Z-Score'
            if col_label in all_modzs:
                all_modzs[col_label].append(modzs[k])
            else:
                all_modzs[col_label] = [modzs[k]]
                
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
else:
    mean_round_modz_cut = 0

Summarize ant metrics¶

In [12]:
if use_ant_metrics:
    a_priori_flag_frac = {ant: np.mean([ant in apxa for apxa in ant_metrics_apriori_exants.values()]) for ant in ants}
    dead_ant_frac = {ap: {ant: np.mean([(ant, ap) in das for das in ant_metrics_dead_ants_dict.values()])
                                 for ant in ants} for ap in antpols}
    crossed_ant_frac = {ant: np.mean([np.any([(ant, ap) in cas for ap in antpols])
                                      for cas in ant_metrics_crossed_ants_dict.values()]) for ant in ants}
    ant_metrics_xants_frac_by_antpol = {antpol: np.mean([antpol in amx for amx in ant_metrics_xants_dict.values()]) for antpol in antpol_pairs}
    ant_metrics_xants_frac_by_ant = {ant: np.mean([np.any([(ant, ap) in amx for ap in antpols])
                                     for amx in ant_metrics_xants_dict.values()]) for ant in ants}
    average_dead_metrics = {ap: {ant: np.nanmean([dm.get((ant, ap), np.nan) for dm in ant_metrics_dead_metrics.values()]) 
                                 for ant in ants} for ap in antpols}
    average_crossed_metrics = {ant: np.nanmean([cm.get((ant, ap), np.nan) for ap in antpols 
                                                for cm in ant_metrics_crossed_metrics.values()]) for ant in ants}
else:
    dead_cut = 0.4
    crossed_cut = 0.0

Summarize redcal chi^2 metrics¶

In [13]:
if use_redcal:
    cspa = {ant: np.nanmedian(np.hstack([cspa_med_dict[cal][ant] for cal in redcal_files])) for ant in antpol_pairs}
    redcal_prior_flag_frac = {ant: np.mean([np.any([afd[ant, ap] and not ant in flagged_by_redcal_dict[cal] for ap in antpols])
                                            for cal, afd in post_redcal_ant_flags_dict.items()]) for ant in ants}
    redcal_flagged_frac = {ant: np.mean([ant in fbr for fbr in flagged_by_redcal_dict.values()]) for ant in ants}

Build DataFrame¶

In [14]:
# build dataframe
to_show = {'Ant': [f'<a href="{ant_to_report_url(ant)}" target="_blank">{ant}</a>' for ant in ants],
           'Node': [nodes[ant] for ant in ants], 
           'A Priori Status': [a_priori_statuses[ant] for ant in ants]}
           #'Worst Metric': worst_metrics, 'Worst Modified Z-Score': worst_zs}
df = pd.DataFrame(to_show)

# create bar chart columns for flagging percentages:
bar_cols = {}
if use_auto_metrics:
    bar_cols['Auto Metrics Flags'] = [float(ant in auto_ex_ants) for ant in ants]
if use_ant_metrics:
    if np.sum(list(a_priori_flag_frac.values())) > 0:  # only include this col if there are any a priori flags
        bar_cols['A Priori Flag Fraction in Ant Metrics'] = [a_priori_flag_frac[ant] for ant in ants]
    for ap in antpols:
        bar_cols[f'Dead Fraction in Ant Metrics ({ap})'] = [dead_ant_frac[ap][ant] for ant in ants]
    bar_cols['Crossed Fraction in Ant Metrics'] = [crossed_ant_frac[ant] for ant in ants]
if use_redcal:
    bar_cols['Flag Fraction Before Redcal'] = [redcal_prior_flag_frac[ant] for ant in ants]
    bar_cols['Flagged By Redcal chi^2 Fraction'] = [redcal_flagged_frac[ant] for ant in ants]  
for col in bar_cols:
    df[col] = bar_cols[col]

# add auto_metrics
if use_auto_metrics:
    for label, modz in all_modzs.items():
        df[label] = modz
z_score_cols = [col for col in df.columns if 'Modified Z-Score' in col]        
        
# add ant_metrics
ant_metrics_cols = {}
if use_ant_metrics:
    for ap in antpols:
        ant_metrics_cols[f'Average Dead Ant Metric ({ap})'] = [average_dead_metrics[ap][ant] for ant in ants]
    ant_metrics_cols['Average Crossed Ant Metric'] = [average_crossed_metrics[ant] for ant in ants]
    for col in ant_metrics_cols:
        df[col] = ant_metrics_cols[col]   

# add redcal chisq
redcal_cols = []
if use_redcal:
    for ap in antpols:
        col_title = f'Median chi^2 Per Antenna ({ap})'
        df[col_title] = [cspa[ant, ap] for ant in ants]
        redcal_cols.append(col_title)

# sort by node number and then by antenna number within nodes
df.sort_values(['Node', 'Ant'], ascending=True)

# style dataframe
table = df.style.hide_index()\
          .applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
          .background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=z_score_cols) \
          .background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=redcal_cols) \
          .applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
          .format({col: '{:,.4f}'.format for col in z_score_cols}) \
          .format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
          .format({col: '{:,.2%}'.format for col in bar_cols}) \
          .applymap(lambda val: 'font-weight: bold', subset=['Ant']) \
          .set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])]) \

Table 1: RTP Per-Antenna Metrics Summary Table¶

This admittedly very busy table incorporates summary information about all antennas in the array. Its columns depend on what information is available when the notebook is run (i.e. whether auto_metrics, ant_metrics, and/or redcal is done). These can be divided into 5 sections:

Basic Antenna Info: antenna number, node, and its a priori status.

Flag Fractions: Fraction of the night that an antenna was flagged for various reasons. Note that auto_metrics flags antennas for the whole night, so it'll be 0% or 100%.

auto_metrics Details: If auto_metrics is included, this section shows the modified Z-score signifying how much of an outlier each antenna and polarization is in each of four categories: bandpass shape, overall power, temporal variability, and temporal discontinuities. Bold red text indicates that this is a reason for flagging the antenna. It is reproduced from the auto_metrics_inspect.ipynb nightly notebook, so check that out for more details on the precise metrics.

ant_metrics Details: If ant_metrics is included, this section shows the average correlation-based metrics for antennas over the whole night. Low "dead ant" metrics (nominally below 0.4) indicate antennas not correlating with the rest of the array. Negative "crossed ant" metrics indicate antennas that show stronger correlations in their cross-pols than their same-pols, indicating that the two polarizations are probably swapped. Bold text indicates that the average is below the threshold for flagging.

redcal chi^2 Details: If redcal is included, this shows the median chi^2 per antenna. This would be 1 in an ideal array. Antennas are thrown out when they they are outliers in their median chi^2, usually greater than 4-sigma outliers in modified Z-score.

In [15]:
HTML(table.render())
Out[15]:
Ant Node A Priori Status Auto Metrics Flags Dead Fraction in Ant Metrics (Jee) Dead Fraction in Ant Metrics (Jnn) Crossed Fraction in Ant Metrics Flag Fraction Before Redcal Flagged By Redcal chi^2 Fraction ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score Average Dead Ant Metric (Jee) Average Dead Ant Metric (Jnn) Average Crossed Ant Metric Median chi^2 Per Antenna (Jee) Median chi^2 Per Antenna (Jnn)
0 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 20.398879 102.585524 74.638016 117.192818 51.375299 127.190875 132.051687 456.172092 0.018192 0.016914 0.001932 1.092473 1.082730
1 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 24.731898 68.626305 86.822950 89.462788 58.503687 58.967866 396.959581 314.786003 0.016306 0.016106 0.000105 1.062595 1.058662
2 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 19.289927 57.581225 72.628899 79.414020 45.817514 37.251923 167.592561 192.912052 0.017583 0.016342 0.000859 1.093156 1.085127
3 1 RF_maintenance 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 3.077730 -0.189577 0.899755 0.927046 0.036166 -0.287291 -0.047420 0.033840 0.709516 0.638688 0.456878 3.754149 3.653071
4 1 RF_maintenance 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.400911 0.943309 -0.842968 -0.644757 -1.719207 -0.414309 -1.393941 -0.610430 0.718071 0.634047 0.448815 3.951771 4.321756
5 1 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.649601 -0.591265 0.325866 0.435093 -0.642189 0.081373 0.174981 0.328411 0.726473 0.639050 0.448832 1.984662 1.849359
7 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.076232 -0.883671 0.051146 -0.149425 -0.725606 1.370690 0.622482 3.027021 0.734085 0.661912 0.458812 3.254074 3.442339
8 2 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.707420 2.134690 3.533957 4.367409 3.436660 2.979067 3.920940 2.820952 0.721899 0.638220 0.465117 2.946470 2.813472
9 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.074426 -0.251984 0.004132 -0.176200 1.299439 1.714915 5.108437 5.354688 0.723085 0.645270 0.464029 2.902242 2.737042
10 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.536736 -0.461712 0.536343 -0.524419 0.128314 1.553386 0.049418 0.667853 0.711070 0.631933 0.461425 2.704954 2.597813
11 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 136.686105 56.459037 95.273696 85.478465 31.888191 40.355090 189.065473 176.213216 0.017523 0.016903 0.000896 1.164327 1.172737
12 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 68.729486 37.682204 96.243713 80.944102 143.673879 44.400167 506.895692 263.158408 0.018187 0.017103 0.000601 1.092639 1.100414
13 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 45.773336 42.213763 81.005083 79.372602 47.891019 31.428917 278.936543 197.733737 0.018375 0.017868 0.000322 1.098240 1.088502
14 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 66.947915 61.227069 86.192837 78.776845 50.574641 24.398380 269.542865 151.080936 0.017821 0.016944 0.000541 1.087260 1.082776
15 1 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.022925 1.275321 0.753436 -0.230941 1.142821 1.203120 3.823507 3.983223 0.736026 0.645162 0.450135 2.097099 1.977780
16 1 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.634912 1.069962 0.080956 -0.539436 9.759171 8.444480 14.419254 12.688810 0.742403 0.662183 0.439533 5.010313 5.818039
17 1 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.343635 -0.275826 0.394681 0.199715 0.751266 -0.368474 0.121837 -0.617183 0.731914 0.663128 0.431394 2.124528 2.043207
18 1 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.819043 10.786353 1.403774 5.317988 3.460229 12.771280 8.179092 17.696348 0.727226 0.439357 0.488825 3.630981 2.053504
19 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.564228 0.163946 0.144764 0.084137 1.657039 85.610625 7.053334 51.971660 0.748560 0.675467 0.452459 3.617891 3.660399
20 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.285595 1.078396 1.324787 -0.430398 0.138252 -0.148677 -0.168168 -0.322819 0.738286 0.654044 0.457125 3.143749 2.864262
21 2 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.560730 1.884753 0.518647 14.696374 -1.327241 153.400096 -0.843234 90.541140 0.727329 0.641958 0.464559 3.037213 2.767037
23 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 28.106342 24.653405 76.054950 75.451715 45.365531 29.893932 188.782800 170.705279 0.017338 0.016468 0.000383 1.073624 1.073011
24 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 22.301103 65.529575 97.915308 99.928533 89.956982 130.636179 367.943810 388.073890 0.016904 0.016455 0.000641 1.072368 1.063497
25 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
26 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
27 1 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.269835 20.759068 39.807312 40.460613 9.665100 7.009284 7.377241 5.659195 0.051851 0.052483 0.004128 1.197245 1.221848
28 1 RF_maintenance 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 5.909998 27.677495 5.386643 23.078688 5.877757 3.439443 3.868541 5.974310 0.494224 0.234073 0.281897 11.310474 3.325899
29 1 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.447634 -0.504094 0.093023 -0.712144 0.059401 -0.149630 1.849201 2.090993 0.747560 0.668676 0.430391 1.933435 2.006891
30 1 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.767562 0.818638 1.085453 -0.545352 30.813217 2.435475 28.867181 6.268069 0.742733 0.681354 0.420646 4.173548 4.908061
31 2 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.674912 -0.302595 0.349401 -0.448570 -0.348672 2.035932 0.141260 2.490706 0.748256 0.677619 0.435261 1.691992 1.767058
32 2 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 27.865502 24.334403 3.875645 2.667170 2.017324 2.960136 1.398559 0.767415 0.645898 0.591680 0.227113 5.894643 4.993089
33 2 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.112159 4.683050 -0.255943 -0.484106 -1.296040 -0.037995 -0.868198 1.166711 0.734258 0.481640 0.539778 3.767285 2.236446
36 3 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 6.494450 6.443215 0.575854 3.073899 0.496300 0.895368 0.016579 0.536561 0.726734 0.637065 0.474796 3.298593 3.130504
37 3 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
38 3 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 491.471755 724.451085 inf inf 2776.516747 4927.844467 10450.947105 19352.855679 nan nan nan 0.000000 0.000000
39 0 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
40 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.521135 0.211967 1.238175 0.797734 -1.512412 -0.608586 -1.079663 -0.650679 0.729921 0.657990 0.433805 2.296713 2.284907
41 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.736514 -0.849889 -0.834304 -0.705915 1.329555 -0.747607 0.292500 -0.740561 0.740338 0.668610 0.428897 2.271908 2.134362
42 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.672306 0.674070 -0.707273 -0.140140 1.627395 -0.168916 2.931203 1.672329 0.754511 0.685808 0.443659 2.169408 1.981905
45 5 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.122490 19.945566 38.959120 40.097767 9.641647 5.501698 6.797075 4.440408 0.028995 0.039100 0.008517 1.220931 1.476291
46 5 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.988199 -1.010980 -0.889984 -0.769801 -0.005433 -0.967224 -0.235398 -0.858251 0.720122 0.643850 0.459101 1.451517 1.506853
50 3 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 7.376958 0.894123 2.548228 -0.504677 19.788844 -0.057330 14.697560 1.738425 0.693230 0.626977 0.436821 4.267910 3.442403
51 3 digital_ok 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 0.598526 36.595974 -0.127220 48.831767 -0.557627 5.801282 -0.473952 5.869821 0.730945 0.043128 0.433516 3.471789 1.175111
52 3 RF_maintenance 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 6.291021 35.716880 0.844562 49.209772 5.916690 7.095348 5.709667 8.714054 0.712990 0.038629 0.400270 4.223307 1.154135
53 3 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.597139 1.159713 0.257466 0.029588 -1.473824 -0.614254 0.057071 1.488043 0.733798 0.663206 0.451985 3.678938 4.370059
54 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.592761 -0.810866 -0.808125 0.020068 -0.900169 0.278326 1.951592 2.089287 0.743519 0.663987 0.444205 2.041508 2.004020
55 4 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 5.292409 3.688112 17.314041 5.936239 1.439419 3.067348 3.663777 3.129756 0.731675 0.637897 0.446929 4.205730 4.798315
56 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.755211 0.997815 -0.534893 0.269186 -1.304995 0.243537 -0.944082 -0.088504 0.741031 0.672467 0.437045 2.121376 2.009042
57 4 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 2.008281 0.699305 3.381337 2.755729 14.828729 2.063228 10.794072 3.232638 0.749206 0.663993 0.453348 4.568617 5.175604
65 3 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.788150 1.365625 1.809682 1.966516 1.919273 0.666624 0.623025 0.119145 0.722530 0.626181 0.474606 1.814500 1.690193
66 3 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.123980 1.337984 2.989700 0.663355 0.611605 1.277523 1.067905 2.025946 0.721414 0.636103 0.462405 1.788261 1.654792
67 3 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.341913 2.067461 1.689611 7.450052 0.058515 2.226265 0.176515 1.589454 0.720752 0.648277 0.447896 3.108980 3.770100
68 3 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 917.812110 283.590478 inf inf 4127.991908 1020.569498 12841.948801 3862.520689 nan nan nan 0.000000 0.000000
69 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.644259 -0.279450 -0.772910 -0.262809 0.005433 -0.548832 -0.162877 -0.682454 0.732603 0.668685 0.451576 2.086304 1.937971
70 4 RF_maintenance 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 4.384883 6.671589 2.043625 9.834270 5.511254 1.900382 2.785437 1.179957 0.246414 0.274699 -0.325935 3.644228 3.644296
71 4 digital_ok 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.581560 0.756157 1.035106 1.667624 3.596115 0.874407 2.323661 -0.154294 0.251082 0.269155 -0.331801 3.138502 3.095664
72 4 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.315578 -0.240733 0.977978 -0.712260 3.462885 0.295247 2.468575 -0.083641 0.733544 0.661505 0.435410 1.911667 1.672098
73 5 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.600987 1.375743 1.347512 1.932809 4.072675 1.978964 4.974471 3.739020 0.737879 0.649535 0.456464 3.667037 3.637233
81 7 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
82 7 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
83 7 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
84 8 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 7.473431 7.976042 0.332480 0.522307 0.514705 -0.765313 0.049037 -0.693492 0.036251 0.078731 0.001958 1.167574 1.175752
85 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.733189 21.161128 34.576276 35.283138 8.273629 4.478406 5.645966 3.686678 0.032985 0.031362 0.001459 1.130338 1.127618
86 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.211877 22.560031 35.564682 36.224281 8.643462 4.963058 5.623594 3.953099 0.030117 0.031071 0.002297 1.126363 1.114810
87 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 12.795658 3.806641 0.144786 4.419663 35.111086 3.384338 24.791486 3.381395 0.086472 0.091692 0.019709 1.172637 1.167254
88 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 21.918815 24.188424 35.636021 36.576724 8.684651 4.887403 6.945485 4.095553 0.041340 0.043163 -0.001037 1.164328 1.162212
89 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 1121.476096 554.783701 inf inf -7229.572231 -3281.296514 -27939.170920 -12611.759756 nan nan nan 0.000000 0.000000
90 9 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 2.420080 -0.139365 3.469979 -0.777091 5.458853 -0.699397 5.460106 -0.269321 0.734876 0.654090 0.466506 3.981091 4.410823
91 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 18.000363 20.614017 35.654224 37.089918 8.389657 4.457094 6.276235 3.716226 0.040074 0.043832 0.000563 1.247827 1.784215
92 10 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
93 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
94 10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 682.060384 312.288229 inf inf 4906.524660 1587.466314 17785.987909 5998.488013 nan nan nan 0.000000 0.000000
98 7 digital_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 3.195763 2.996332 5.154571 1.707381 5.359177 2.182673 2.731918 2.394453 0.702566 0.634692 0.450455 3.542807 4.009912
99 7 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.499849 0.311227 0.776663 0.081727 0.430312 2.971039 1.968039 3.377192 0.721885 0.643794 0.446984 1.942094 1.766001
100 7 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 3.857370 2.721477 5.967191 5.076129 4.300164 2.295777 1.887289 0.702985 0.710754 0.633499 0.458581 3.346061 3.488350
101 8 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 7.226079 8.786398 -0.223062 1.837646 -0.417357 2.607393 2.576515 3.473919 0.047150 0.067695 0.003659 1.189307 1.188835
102 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.225975 20.928769 35.170294 37.323258 8.318758 4.565628 5.491628 3.501257 0.034454 0.032890 0.000610 1.140352 1.131145
103 8 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 3.776072 8.748274 1.168254 1.252214 -0.481223 0.049114 1.739923 1.963707 0.065191 0.059044 0.009584 1.160023 1.164346
104 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 8.388851 64.832994 2.833328 37.166117 2.572799 12.055091 4.711110 14.050133 0.089319 0.080531 -0.013899 1.162439 1.142741
105 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 19.134442 25.243031 34.114889 35.536439 7.739140 3.859886 5.745398 3.399017 0.037693 0.042871 0.004757 1.260111 1.499842
106 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 274.976749 281.619815 inf inf 1236.236140 1196.230168 4886.598546 4628.653901 nan nan nan 0.000000 0.000000
107 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 18.398663 19.159362 34.286884 35.167539 8.126911 4.256883 5.543647 3.448526 0.044601 0.046478 0.003885 1.217006 1.223106
108 9 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.141369 2.373804 0.742363 -0.250141 -1.718390 -1.030600 -1.172662 -0.976568 0.724696 0.645062 0.464034 1.426009 1.407408
109 10 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.561883 -0.342832 0.165464 -0.828876 -0.457022 -1.013787 -0.485038 -0.912663 0.726508 0.644783 0.467122 1.690990 1.499195
110 10 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 39.805504 4.272012 5.091909 6.408693 2.383891 4.008354 3.597530 3.032042 0.633055 0.618880 0.365580 6.510862 6.352845
111 10 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.118838 0.223276 -0.068734 -0.768835 -1.226327 -0.369729 -0.922803 -0.022510 0.720416 0.630972 0.484139 1.670751 1.481633
112 10 RF_maintenance 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% -0.494754 0.571577 0.373856 -0.396834 0.392594 4.830233 0.551956 2.676860 0.209224 0.217387 -0.325030 2.601677 2.233583
116 7 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.845987 3.491760 2.250059 5.876867 2.833082 3.329456 3.527385 3.427024 0.710728 0.617038 0.450907 4.461945 5.384105
117 7 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.552727 0.441943 1.728116 -0.368824 -0.261666 -0.569817 -0.669686 -0.700742 0.733026 0.653672 0.457646 1.913288 1.597389
118 7 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.958415 1.299378 0.547062 -0.020068 0.648598 0.778877 0.037809 0.062045 0.741097 0.655877 0.459927 2.107433 1.758125
119 7 RF_maintenance 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.906398 1.238167 2.799455 1.882721 1.751699 0.052385 0.596180 -0.478564 0.731307 0.651376 0.474337 3.761239 4.193003
120 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 12.753497 32.553931 4.520460 44.206024 2.804372 4.515101 1.504546 4.345770 0.090556 0.036027 0.049617 1.204311 1.167839
121 8 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 2.576325 7.275471 0.918479 7.273353 0.309044 0.934329 10.921503 9.738704 0.055899 0.035532 0.006149 1.198464 1.204089
122 8 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 8.131018 6.617964 2.380045 0.562639 -1.481960 -0.305671 -1.003727 -0.370081 0.074361 0.048203 0.011363 1.179279 1.175495
123 8 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 5.878247 5.376993 0.033334 1.515054 -1.141159 0.493128 -1.065500 -0.130079 0.080709 0.087119 0.015203 1.212860 1.217491
124 9 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 506.331127 368.492127 inf inf 2491.370765 -1483.162202 8946.860435 -4995.184171 nan nan nan 0.000000 0.000000
125 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
126 9 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 274.793782 272.549371 inf inf 1082.236171 1082.207565 4107.157852 4067.081317 nan nan nan 0.000000 0.000000
127 10 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.671719 1.128776 1.978553 1.148316 5.169349 2.000063 5.745585 3.674417 0.720152 0.639840 0.467945 4.295824 4.945859
128 10 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.199729 2.401200 -0.082761 -0.637608 -1.106919 0.464018 -0.811724 0.022510 0.716992 0.624766 0.469988 1.853715 1.613085
129 10 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 2.266278 -0.297070 5.764254 0.673663 2.648771 0.240870 3.093998 1.314123 0.707424 0.625987 0.467536 4.874062 4.694506
130 10 digital_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.199115 5.024347 39.698170 4.380252 8.749121 0.582383 6.039234 -0.032781 0.047696 0.361881 0.188207 1.303387 5.245086
135 12 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.846725 -0.307690 -0.617083 -0.843005 -0.498299 0.284268 2.444576 2.747215 0.717805 0.630627 0.455852 1.895112 1.897121
136 12 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.122054 7.390722 -0.485952 0.644691 0.143830 4.572390 -0.050951 2.554454 0.729492 0.619446 0.429929 5.226004 6.115980
137 7 RF_maintenance 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 9.618597 21.889488 4.915890 35.905878 26.874632 4.816486 17.813942 4.274940 0.481483 0.053818 0.307401 7.530495 1.813459
138 7 digital_ok 100.00% 100.00% 0.00% 0.00% 100.00% 0.00% 19.866293 2.662759 33.419444 1.031144 8.100971 -0.635232 5.665470 -0.656905 0.046052 0.649925 0.448896 1.242943 3.683939
140 13 digital_ok 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 0.695251 0.970670 0.194553 0.076274 -0.682358 -0.508445 -0.379803 -0.504508 0.093488 0.067566 0.015045 1.200347 1.202011
141 13 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 0.990111 3.962682 -0.688829 25.827843 2.479405 3.769944 3.837214 9.893278 0.085111 0.076124 0.015971 1.248140 1.238357
142 13 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 19.682112 21.392780 23.533636 40.777328 2.153949 5.502089 2.966278 5.419771 0.098564 0.037522 0.038973 1.256536 1.234301
143 14 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.449640 -0.828979 -0.606524 -0.435149 -1.092940 1.428551 -0.833741 0.353185 0.714996 0.643806 0.477554 1.472063 1.358626
144 14 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 2.510648 3.391756 5.046880 10.486436 1.116268 28.426773 0.942055 16.951392 0.722816 0.637111 0.483717 8.426824 7.112143
145 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.157220 20.653082 40.034860 40.977720 9.781826 5.625535 9.895470 7.189077 0.035408 0.036975 -0.000787 1.420154 1.376780
150 15 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 18.893706 22.984379 39.951475 41.726137 9.117758 5.546235 7.205946 5.215657 0.044100 0.045059 0.001856 1.255551 1.215372
155 12 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 15.848884 17.347594 39.197999 40.309582 9.514082 5.680970 6.620899 6.032103 0.050611 0.044805 0.003568 1.585410 1.585789
156 12 RF_maintenance 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.623597 1.611728 -0.346240 0.281949 -0.775794 -0.258522 -0.328138 2.125520 0.724317 0.619183 0.458658 6.132328 4.907184
157 12 RF_maintenance 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.432834 -0.436039 1.760980 -0.253548 0.446386 -0.495904 -0.204672 -0.679296 0.721564 0.637911 0.466183 5.280895 4.997834
158 12 RF_maintenance 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.358664 -1.340895 -0.685627 -0.638513 2.615601 0.494372 3.921937 2.794143 0.716838 0.633438 0.468714 6.865274 6.078206
160 13 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 16.095300 17.899589 39.473803 40.438784 8.962199 4.659232 6.127920 3.463781 0.040803 0.040149 0.003104 1.314035 1.294256
161 13 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 1.143001 43.934950 2.628559 11.904933 0.570193 3.441647 0.326950 2.097539 0.046536 0.034259 0.000672 1.298558 1.302536
162 13 digital_ok 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 0.339935 -0.614182 0.534391 -0.660441 1.287491 0.121098 0.464514 -0.205432 0.057234 0.044943 0.001910 1.286064 1.277448
163 14 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.024650 -0.110881 0.088444 -0.743893 -0.708339 0.595798 -0.616616 0.478605 0.696960 0.615033 0.474897 0.829390 0.753193
164 14 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.289627 -0.127523 -0.550660 -0.072343 1.021717 18.162924 2.190023 14.623268 0.699129 0.613238 0.470317 5.272867 5.613164
165 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
166 14 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 379.998179 885.905701 inf inf 2118.850845 6327.763122 8579.735866 25331.367619 nan nan nan 0.000000 0.000000
167 15 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 11.338129 14.966346 3.225452 3.781184 2.197548 4.020813 0.812722 3.643127 0.571034 0.446839 0.244551 3.597764 2.784045
168 15 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 707.737884 430.793868 inf inf 5669.522737 2630.815612 23421.046247 9825.946052 nan nan nan 0.000000 0.000000
169 15 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 678.105792 1381.976130 inf inf 5259.301711 5849.628642 12617.390090 15791.956782 nan nan nan 0.000000 0.000000
170 15 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
176 12 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.584541 -0.909133 0.251297 -0.491467 -1.227884 -0.454303 -1.078115 -0.616954 0.703532 0.610789 0.470378 1.285760 1.139792
177 12 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.532022 0.911324 -0.340059 1.969166 -0.777974 9.567708 1.818682 7.950092 0.714616 0.604425 0.472883 7.377069 8.223071
178 12 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.022925 -1.111494 2.079546 -0.842858 -0.822065 -0.875558 -0.529636 -0.909748 0.711491 0.619890 0.471610 1.252488 1.124675
179 12 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
180 13 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 17.491420 21.843830 1.632746 41.023186 4.715885 6.815050 15.402357 7.381676 0.094135 0.038578 0.038813 1.341512 1.306221
181 13 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 4.674140 1.371870 7.456582 1.777904 5.457585 0.438525 4.107813 1.559539 0.034784 0.054566 0.005577 1.323116 1.297439
182 13 RF_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 1.603520 8.923714 3.862314 8.145834 4.627796 383.849254 3.271791 236.948983 0.077968 0.070312 0.028829 1.317257 1.291472
183 13 digital_ok 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% -0.777921 1.247901 1.686123 2.220488 1.096726 -0.616450 0.438641 0.072032 0.067208 0.063611 0.008865 1.298404 1.311406
184 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
185 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
186 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 487.129325 1418.354422 inf inf 2053.013459 9116.354728 3494.837199 20294.454835 nan nan nan 0.000000 0.000000
187 14 digital_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
189 15 digital_ok 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.932595 1.650551 -0.736030 -0.057705 -1.439667 1.192740 -1.119820 0.705418 0.691505 0.591532 0.478226 1.892719 1.361320
190 15 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 47.554616 31.547414 6.523752 6.238113 11.712400 2.863847 34.398199 9.554307 0.537680 0.478836 0.239544 4.122017 3.700531
191 15 digital_ok 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% -0.167386 -0.746457 1.096847 -0.870617 0.851769 0.707383 0.239649 1.739375 0.680593 0.590862 0.489264 4.039124 3.913260
220 18 RF_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
221 18 RF_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
222 18 RF_ok 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
320 3 dish_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 21.717822 21.619271 30.994200 31.303591 10.657743 6.708437 9.035419 6.199318 0.060654 0.054420 -0.000182 0.000000 0.000000
321 2 not_connected 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1.485283 1.048142 2.293712 2.722416 1.130969 1.905509 4.553401 4.418261 0.613568 0.503528 0.473257 0.000000 0.000000
323 2 not_connected 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 20.557468 3.554740 3.213286 5.903742 2.447038 1.761006 4.412357 1.140239 0.503052 0.490855 0.359495 0.000000 0.000000
324 4 not_connected 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 4.408805 4.814138 6.691758 7.017920 6.073098 3.590874 3.744647 2.241717 0.583364 0.466605 0.457019 0.000000 0.000000
329 12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 278.280352 271.647419 inf inf 1217.131904 -1120.627583 4488.600163 -4011.958695 nan nan nan 0.000000 0.000000
333 12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan 0.000000 0.000000
In [16]:
# print ex_ants for easy copy-pasting to YAML file
proposed_ex_ants = [ant for i, ant in enumerate(ants) if np.any([col[i] > .1 for col in bar_cols.values()])]
print('ex_ants: [' + ", ".join(str(ant) for ant in proposed_ex_ants) + ']')
ex_ants: [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 36, 37, 38, 39, 45, 50, 51, 52, 53, 55, 57, 67, 68, 70, 71, 73, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 101, 102, 103, 104, 105, 106, 107, 110, 112, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 136, 137, 138, 140, 141, 142, 144, 145, 150, 155, 156, 157, 158, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 220, 221, 222, 320, 321, 323, 324, 329, 333]
In [17]:
# write to csv
outpath = os.path.join(nb_outdir, f'rtp_summary_table_{JD}.csv')
print(f'Now saving Table 1 to a csv at {outpath}')
df.to_csv(outpath)
Now saving Table 1 to a csv at /home/obs/src/H5C_Notebooks/_rtp_summary_/rtp_summary_table_2459763.csv
In [18]:
# Load antenna positions
data_list = sorted(glob.glob(os.path.join(data_path, f'zen.{JD}.?????.sum.uvh5')))
hd = io.HERAData(data_list[len(data_list) // 2])

# Figure out where to draw the nodes
node_centers = {}
for node in sorted(set(list(nodes.values()))):
    if np.isfinite(node):
        this_node_ants = [ant for ant in ants + unused_ants if nodes[ant] == node]
        if len(this_node_ants) == 1:
            # put the node label just to the west of the lone antenna 
            node_centers[node] = hd.antpos[ant][node] + np.array([-14.6 / 2, 0, 0])
        else:
            # put the node label between the two antennas closest to the node center
            node_centers[node] = np.mean([hd.antpos[ant] for ant in this_node_ants], axis=0)
            closest_two_pos = sorted([hd.antpos[ant] for ant in this_node_ants], 
                                     key=lambda pos: np.linalg.norm(pos - node_centers[node]))[0:2]
            node_centers[node] = np.mean(closest_two_pos, axis=0)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/tmp/ipykernel_11179/3583557015.py in <module>
      1 # Load antenna positions
      2 data_list = sorted(glob.glob(os.path.join(data_path, f'zen.{JD}.?????.sum.uvh5')))
----> 3 hd = io.HERAData(data_list[len(data_list) // 2])
      4 
      5 # Figure out where to draw the nodes

~/anaconda/envs/RTP/lib/python3.7/site-packages/hera_cal/io.py in __init__(self, input_data, upsample, downsample, filetype, **read_kwargs)
    495             temp_paths = copy.deepcopy(self.filepaths)
    496             self.filepaths = self.filepaths[0]
--> 497             self.read(read_data=False, **read_kwargs)
    498             self.filepaths = temp_paths
    499 

~/anaconda/envs/RTP/lib/python3.7/site-packages/hera_cal/io.py in read(self, bls, polarizations, times, time_range, lsts, lst_range, frequencies, freq_chans, axis, read_data, return_data, run_check, check_extra, run_check_acceptability, **kwargs)
    762         # process data into DataContainers
    763         if read_data or self.filetype in ['uvh5', 'uvfits']:
--> 764             self._determine_blt_slicing()
    765             self._determine_pol_indexing()
    766         if read_data and return_data:

~/anaconda/envs/RTP/lib/python3.7/site-packages/hera_cal/io.py in _determine_blt_slicing(self)
    569     def _determine_blt_slicing(self):
    570         '''Determine the mapping between antenna pairs and slices of the blt axis of the data_array.'''
--> 571         self._blt_slices = get_blt_slices(self)
    572 
    573     def _determine_pol_indexing(self):

~/anaconda/envs/RTP/lib/python3.7/site-packages/hera_cal/io.py in get_blt_slices(uvo, tried_to_reorder)
    414         elif not (len(set(np.ediff1d(indices))) == 1):  # checks if the consecutive differences are all the same
    415             if not tried_to_reorder:
--> 416                 uvo.reorder_blts(order='time')
    417                 return get_blt_slices(uvo, tried_to_reorder=True)
    418             else:

~/anaconda/envs/RTP/lib/python3.7/site-packages/pyuvdata/uvdata/uvdata.py in reorder_blts(self, order, minor_order, conj_convention, uvw_tol, conj_convention_use_enu, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check)
   4117                 check_extra=check_extra,
   4118                 run_check_acceptability=run_check_acceptability,
-> 4119                 strict_uvw_antpos_check=strict_uvw_antpos_check,
   4120             )
   4121 

~/anaconda/envs/RTP/lib/python3.7/site-packages/pyuvdata/uvdata/uvdata.py in check(self, check_extra, run_check_acceptability, check_freq_spacing, strict_uvw_antpos_check)
   2476         if self.Ntimes != len(np.unique(self.time_array)):
   2477             raise ValueError(
-> 2478                 "Ntimes must be equal to the number of unique "
   2479                 "times in the time_array"
   2480             )

ValueError: Ntimes must be equal to the number of unique times in the time_array
In [19]:
def Plot_Array(ants, unused_ants, outriggers):
    plt.figure(figsize=(16,16))
    
    plt.scatter(np.array([hd.antpos[ant][0] for ant in hd.data_ants if ant in ants]), 
                np.array([hd.antpos[ant][1] for ant in hd.data_ants if ant in ants]), c='w', s=0)

    # connect every antenna to their node
    for ant in ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', zorder=0)

    rc_color = '#0000ff'
    antm_color = '#ffa500'
    autom_color = '#ff1493'

    # Plot 
    unflagged_ants = []
    for i, ant in enumerate(ants):
        ant_has_flag = False
        # plot large blue annuli for redcal flags
        if use_redcal:
            if redcal_flagged_frac[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=7 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=rc_color, alpha=redcal_flagged_frac[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot medium green annuli for ant_metrics flags
        if use_ant_metrics: 
            if ant_metrics_xants_frac_by_ant[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=antm_color, alpha=ant_metrics_xants_frac_by_ant[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot small red annuli for auto_metrics
        if use_auto_metrics:
            if ant in auto_ex_ants:
                ant_has_flag = True                
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, lw=0, color=autom_color)) 
        
        # plot black/white circles with black outlines for antennas
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4 * (2 - 1 * float(not outriggers)), fill=True, color=['w', 'k'][ant_has_flag], ec='k'))
        if not ant_has_flag:
            unflagged_ants.append(ant)

        # label antennas, using apriori statuses if available
        try:
            bgc = matplotlib.colors.to_rgb(status_colors[a_priori_statuses[ant]])
            c = 'black' if (bgc[0]*0.299 + bgc[1]*0.587 + bgc[2]*0.114) > 186 / 256 else 'white'
        except:
            c = 'k'
            bgc='white'
        plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color=c, backgroundcolor=bgc)

    # label nodes
    for node in sorted(set(list(nodes.values()))):
        if not np.isnan(node) and not np.all(np.isnan(node_centers[node])):
            plt.text(node_centers[node][0], node_centers[node][1], str(node), va='center', ha='center', bbox={'color': 'w', 'ec': 'k'})
    
    # build legend 
    legend_objs = []
    legend_labels = []
    
    # use circles for annuli 
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgecolor='k', markerfacecolor='w', markersize=13))
    legend_labels.append(f'{len(unflagged_ants)} / {len(ants)} Total {["Core", "Outrigger"][outriggers]} Antennas Never Flagged')
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='k', markersize=15))
    legend_labels.append(f'{len(ants) - len(unflagged_ants)} Antennas {["Core", "Outrigger"][outriggers]} Flagged for Any Reason')

    if use_auto_metrics:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=autom_color, markersize=15))
        legend_labels.append(f'{len([ant for ant in auto_ex_ants if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas Flagged by Auto Metrics')
    if use_ant_metrics: 
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=antm_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum([frac for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants]), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Ant Metrics\n(alpha indicates fraction of time)')        
    if use_redcal:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=rc_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum(list(redcal_flagged_frac.values())), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in redcal_flagged_frac.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Redcal\n(alpha indicates fraction of time)')

    # use rectangular patches for a priori statuses that appear in the array
    for aps in sorted(list(set(list(a_priori_statuses.values())))):
        if aps != 'Not Found':
            legend_objs.append(plt.Circle((0, 0), radius=7, fill=True, color=status_colors[aps]))
            legend_labels.append(f'A Priori Status:\n{aps} ({[status for ant, status in a_priori_statuses.items() if ant in ants].count(aps)} {["Core", "Outrigger"][outriggers]} Antennas)')

    # label nodes as a white box with black outline
    if len(node_centers) > 0:
        legend_objs.append(matplotlib.patches.Patch(facecolor='w', edgecolor='k'))
        legend_labels.append('Node Number')

    if len(unused_ants) > 0:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='grey', markersize=15, alpha=.2))
        legend_labels.append(f'Anntenna Not In Data')
        
    
    plt.legend(legend_objs, legend_labels, ncol=2, fontsize='large', framealpha=1)
    
    if outriggers:
        pass
    else:
        plt.xlim([-200, 150])
        plt.ylim([-150, 150])        
       
    # set axis equal and label everything
    plt.axis('equal')
    plt.tight_layout()
    plt.title(f'Summary of {["Core", "Outrigger"][outriggers]} Antenna Statuses and Metrics on {JD}', size=20)    
    plt.xlabel("Antenna East-West Position (meters)", size=12)
    plt.ylabel("Antenna North-South Position (meters)", size=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    xlim = plt.gca().get_xlim()
    ylim = plt.gca().get_ylim()    
        
    # plot unused antennas
    plt.autoscale(False)    
    for ant in unused_ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', alpha=.2, zorder=0)
        
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='w', ec=None, alpha=1, zorder=0))
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='grey', ec=None, alpha=.2, zorder=0))
        if hd.antpos[ant][0] < xlim[1] and hd.antpos[ant][0] > xlim[0]:
            if hd.antpos[ant][1] < ylim[1] and hd.antpos[ant][1] > ylim[0]:
                plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color='k', alpha=.2) 

Figure 1: Array Plot of Flags and A Priori Statuses¶

This plot shows all antennas, which nodes they are connected to, and their a priori statuses (as the highlight text of their antenna numbers). It may also show (depending on what is finished running):

  • Whether they were flagged by auto_metrics (red circle) for bandpass shape, overall power, temporal variability, or temporal discontinuities. This is done in a binary fashion for the whole night.
  • Whether they were flagged by ant_metrics (green circle) as either dead (on either polarization) or crossed, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.
  • Whether they were flagged by redcal (blue circle) for high chi^2, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.

Note that the last fraction does not include antennas that were flagged before going into redcal due to their a priori status, for example.

In [20]:
core_ants = [ant for ant in ants if ant < 320]
outrigger_ants = [ant for ant in ants if ant >= 320]
Plot_Array(ants=core_ants, unused_ants=unused_ants, outriggers=False)
if len(outrigger_ants) > 0:
    Plot_Array(ants=outrigger_ants, unused_ants=sorted(set(unused_ants + core_ants)), outriggers=True)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_11179/3620142779.py in <module>
      1 core_ants = [ant for ant in ants if ant < 320]
      2 outrigger_ants = [ant for ant in ants if ant >= 320]
----> 3 Plot_Array(ants=core_ants, unused_ants=unused_ants, outriggers=False)
      4 if len(outrigger_ants) > 0:
      5     Plot_Array(ants=outrigger_ants, unused_ants=sorted(set(unused_ants + core_ants)), outriggers=True)

/tmp/ipykernel_11179/1497970787.py in Plot_Array(ants, unused_ants, outriggers)
      7     # connect every antenna to their node
      8     for ant in ants:
----> 9         if nodes[ant] in node_centers:
     10             plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
     11                      [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', zorder=0)

NameError: name 'node_centers' is not defined

Metadata¶

In [21]:
from hera_qm import __version__
print(__version__)
from hera_cal import __version__
print(__version__)
2.0.2
3.1.1.dev2+g1b5039f
In [ ]: