Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "205" csv_folder = "/home/obs/src/H5C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H5C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 253 csvs in /home/obs/src/H5C_Notebooks/_rtp_summary_ Found 247 auto_metrics notebooks in /home/obs/src/H5C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459810 | RF_ok | 0.00% | - | - | - | - | - | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459809 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 4.693413 | 3.754283 | 14.269155 | -0.140793 | 13.762166 | 4.035555 | -1.087070 | 6.834603 | 0.0507 | 0.0448 | 0.0053 | 0.000000 | 0.000000 |
2459808 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 10.787310 | 5.288362 | 15.672262 | -0.294047 | 13.990019 | 3.784551 | 17.931199 | 24.122912 | 0.0546 | 0.0442 | 0.0046 | 1.208254 | 1.220508 |
2459807 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 11.105029 | 5.333639 | 10.579252 | -0.335007 | 12.424176 | 3.320144 | 57.042272 | 74.865599 | 0.0503 | 0.0415 | 0.0040 | 0.849184 | 0.847705 |
2459806 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 9.997320 | 5.701697 | 16.442129 | -0.032656 | 21.342308 | 10.763783 | 56.568827 | 79.507080 | 0.0490 | 0.0439 | 0.0032 | 0.000000 | 0.000000 |
2459805 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 9.832742 | 4.960677 | 13.977547 | -0.151313 | 10.576999 | 3.695767 | 12.815586 | 18.953589 | 0.0542 | 0.0355 | 0.0040 | 0.933262 | 0.944259 |
2459804 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 11.835369 | 5.731457 | 13.242253 | -0.188812 | 11.818011 | 3.639335 | 8.642170 | 12.355010 | 0.0547 | 0.0373 | 0.0040 | 1.238077 | 1.251811 |
2459803 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 14.973431 | 7.590693 | 18.093915 | -0.156425 | 12.331544 | 4.069046 | 28.226635 | 43.014332 | 0.0548 | 0.0434 | 0.0036 | 1.151049 | 1.163752 |
2459802 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 12.250591 | 5.975462 | 15.517814 | -0.366009 | 18.887980 | 4.647267 | 15.164658 | 26.424837 | 0.0542 | 0.0439 | 0.0047 | 1.146653 | 1.154532 |
2459801 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 11.732694 | 6.184296 | 12.827129 | -0.256647 | 19.866097 | 5.357243 | 41.325459 | 58.497832 | 0.0543 | 0.0406 | 0.0034 | 0.000000 | 0.000000 |
2459800 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 12.366124 | 6.020737 | 12.125465 | -0.514829 | 13.162183 | 3.981563 | 40.681713 | 60.728623 | 0.0643 | 0.0517 | 0.0075 | 1.299335 | 1.307137 |
2459799 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 9.532172 | 5.157242 | 15.030206 | 4.161246 | 27.199922 | 11.094107 | 20.641241 | 32.280055 | 0.7303 | 0.6088 | 0.4175 | 6.682814 | 4.826532 |
2459798 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 11.793169 | 13.394783 | 12.695113 | 14.844798 | 10.717032 | 12.896050 | 27.181267 | 30.220921 | 0.6901 | 0.6659 | 0.4238 | 4.025382 | 3.707107 |
2459797 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459796 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 10.919437 | 5.408222 | 17.043497 | 5.233658 | 12.386277 | 2.930252 | 36.940191 | 54.338795 | 0.6666 | 0.6353 | 0.4165 | 0.000000 | 0.000000 |
2459795 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459794 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 11.810461 | 4.890670 | 13.914259 | 1.572900 | 16.904859 | 4.726972 | 57.955438 | 82.886783 | 0.6668 | 0.6436 | 0.3959 | 0.000000 | 0.000000 |
2459793 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 9.348930 | 4.265434 | 13.012402 | 1.967175 | 17.308914 | 3.767654 | 27.813243 | 45.253364 | 0.6518 | 0.6368 | 0.3953 | 2.966110 | 2.849190 |
2459792 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 9.322695 | 4.939791 | 15.126292 | -0.576183 | 18.135181 | 8.877315 | 22.215841 | 28.483941 | 0.7275 | 0.5879 | 0.4221 | 8.602783 | 5.489698 |
2459791 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 11.274607 | 4.728047 | 18.127462 | 0.982844 | 18.748416 | 5.538302 | 8.455603 | 11.404114 | 0.6425 | 0.6276 | 0.3829 | 9.808372 | 8.449360 |
2459790 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 17.678323 | 8.299468 | 16.623564 | 0.766760 | 24.821731 | 8.727108 | 24.353057 | 41.851912 | 0.6251 | 0.6115 | 0.3845 | 4.262536 | 4.294999 |
2459789 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 15.031059 | 7.356584 | 17.332318 | -0.143771 | 25.453580 | 6.612024 | 59.884554 | 99.679653 | 0.6081 | 0.5954 | 0.3766 | 7.958791 | 8.748933 |
2459788 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 12.776400 | 5.879535 | 18.028342 | 0.109140 | 27.034331 | 8.312422 | 26.456901 | 41.090935 | 0.6114 | 0.6005 | 0.3641 | 4.179811 | 4.435130 |
2459787 | RF_ok | 100.00% | 5.38% | 8.06% | 0.00% | 100.00% | 0.00% | 12.249310 | 5.993371 | 14.868842 | -0.049317 | 17.482747 | 4.759003 | 27.726751 | 39.365646 | 0.5676 | 0.5506 | 0.3735 | 2.802710 | 2.565921 |
2459786 | RF_ok | 100.00% | 0.00% | 5.38% | 0.00% | 100.00% | 0.00% | 13.209357 | 6.165202 | 18.810907 | 0.291522 | 27.401646 | 9.069714 | 41.560791 | 55.913295 | 0.5771 | 0.5640 | 0.3551 | 6.675755 | 6.779139 |
2459785 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 11.988644 | 3.809235 | 39.696901 | 5.746516 | 35.561892 | 8.418501 | 14.260366 | 20.060767 | 0.7218 | 0.6112 | 0.3993 | 6.671390 | 5.605641 |
2459784 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 17.979940 | 5.058681 | 30.476753 | 4.611613 | 39.858438 | 8.828151 | 6.431737 | 10.967596 | 0.5429 | 0.5495 | 0.3241 | 5.906331 | 7.883140 |
2459783 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 15.613630 | 6.044917 | 8.862311 | 3.553384 | 19.230183 | 6.802469 | 23.618033 | 34.955806 | 0.5368 | 0.5504 | 0.3249 | 3.237342 | 3.570100 |
2459782 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 14.493103 | 5.690720 | 4.521015 | 1.789598 | 10.811478 | 4.269958 | 16.695066 | 22.219127 | 0.5131 | 0.5288 | 0.3121 | 4.383959 | 4.665473 |
2459781 | RF_ok | 0.00% | 7.82% | 7.82% | 0.00% | 100.00% | 0.00% | 2.021094 | 0.113797 | 0.832856 | -0.673995 | -0.476099 | -3.144575 | -2.061123 | 2.627723 | 0.6938 | 0.6418 | 0.3480 | 3.988064 | 3.567108 |
2459778 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 9.327330 | 3.637173 | 6.752754 | 2.511022 | 17.896919 | 5.601820 | 32.559296 | 46.615555 | 0.6974 | 0.6014 | 0.3929 | 4.669989 | 4.035061 |
2459776 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 8.386725 | 3.268936 | 7.387582 | 3.205815 | 24.938400 | 7.993919 | 14.203351 | 37.573274 | 0.7443 | 0.6251 | 0.4045 | 5.522374 | 4.425233 |
2459774 | RF_ok | - | 0.00% | 0.00% | 0.00% | - | - | nan | nan | nan | nan | nan | nan | nan | nan | 0.7100 | 0.6218 | 0.3857 | nan | nan |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Power | 14.269155 | 3.754283 | 4.693413 | -0.140793 | 14.269155 | 4.035555 | 13.762166 | 6.834603 | -1.087070 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 24.122912 | 5.288362 | 10.787310 | -0.294047 | 15.672262 | 3.784551 | 13.990019 | 24.122912 | 17.931199 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 74.865599 | 5.333639 | 11.105029 | -0.335007 | 10.579252 | 3.320144 | 12.424176 | 74.865599 | 57.042272 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 79.507080 | 9.997320 | 5.701697 | 16.442129 | -0.032656 | 21.342308 | 10.763783 | 56.568827 | 79.507080 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 18.953589 | 9.832742 | 4.960677 | 13.977547 | -0.151313 | 10.576999 | 3.695767 | 12.815586 | 18.953589 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Power | 13.242253 | 5.731457 | 11.835369 | -0.188812 | 13.242253 | 3.639335 | 11.818011 | 12.355010 | 8.642170 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 43.014332 | 14.973431 | 7.590693 | 18.093915 | -0.156425 | 12.331544 | 4.069046 | 28.226635 | 43.014332 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 26.424837 | 5.975462 | 12.250591 | -0.366009 | 15.517814 | 4.647267 | 18.887980 | 26.424837 | 15.164658 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 58.497832 | 6.184296 | 11.732694 | -0.256647 | 12.827129 | 5.357243 | 19.866097 | 58.497832 | 41.325459 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 60.728623 | 6.020737 | 12.366124 | -0.514829 | 12.125465 | 3.981563 | 13.162183 | 60.728623 | 40.681713 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 32.280055 | 5.157242 | 9.532172 | 4.161246 | 15.030206 | 11.094107 | 27.199922 | 32.280055 | 20.641241 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 30.220921 | 11.793169 | 13.394783 | 12.695113 | 14.844798 | 10.717032 | 12.896050 | 27.181267 | 30.220921 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 54.338795 | 10.919437 | 5.408222 | 17.043497 | 5.233658 | 12.386277 | 2.930252 | 36.940191 | 54.338795 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 82.886783 | 11.810461 | 4.890670 | 13.914259 | 1.572900 | 16.904859 | 4.726972 | 57.955438 | 82.886783 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 45.253364 | 9.348930 | 4.265434 | 13.012402 | 1.967175 | 17.308914 | 3.767654 | 27.813243 | 45.253364 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 28.483941 | 9.322695 | 4.939791 | 15.126292 | -0.576183 | 18.135181 | 8.877315 | 22.215841 | 28.483941 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Temporal Variability | 18.748416 | 11.274607 | 4.728047 | 18.127462 | 0.982844 | 18.748416 | 5.538302 | 8.455603 | 11.404114 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 41.851912 | 8.299468 | 17.678323 | 0.766760 | 16.623564 | 8.727108 | 24.821731 | 41.851912 | 24.353057 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 99.679653 | 7.356584 | 15.031059 | -0.143771 | 17.332318 | 6.612024 | 25.453580 | 99.679653 | 59.884554 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 41.090935 | 5.879535 | 12.776400 | 0.109140 | 18.028342 | 8.312422 | 27.034331 | 41.090935 | 26.456901 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 39.365646 | 12.249310 | 5.993371 | 14.868842 | -0.049317 | 17.482747 | 4.759003 | 27.726751 | 39.365646 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 55.913295 | 6.165202 | 13.209357 | 0.291522 | 18.810907 | 9.069714 | 27.401646 | 55.913295 | 41.560791 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Power | 39.696901 | 3.809235 | 11.988644 | 5.746516 | 39.696901 | 8.418501 | 35.561892 | 20.060767 | 14.260366 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | ee Temporal Variability | 39.858438 | 17.979940 | 5.058681 | 30.476753 | 4.611613 | 39.858438 | 8.828151 | 6.431737 | 10.967596 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 34.955806 | 6.044917 | 15.613630 | 3.553384 | 8.862311 | 6.802469 | 19.230183 | 34.955806 | 23.618033 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 22.219127 | 5.690720 | 14.493103 | 1.789598 | 4.521015 | 4.269958 | 10.811478 | 22.219127 | 16.695066 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 2.627723 | 2.021094 | 0.113797 | 0.832856 | -0.673995 | -0.476099 | -3.144575 | -2.061123 | 2.627723 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 46.615555 | 3.637173 | 9.327330 | 2.511022 | 6.752754 | 5.601820 | 17.896919 | 46.615555 | 32.559296 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | N19 | RF_ok | nn Temporal Discontinuties | 37.573274 | 8.386725 | 3.268936 | 7.387582 | 3.205815 | 24.938400 | 7.993919 | 14.203351 | 37.573274 |