Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "206" csv_folder = "/home/obs/src/H5C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H5C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 253 csvs in /home/obs/src/H5C_Notebooks/_rtp_summary_ Found 247 auto_metrics notebooks in /home/obs/src/H5C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459810 | RF_ok | 0.00% | - | - | - | - | - | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459809 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 3.442593 | 3.088383 | -0.443180 | 10.110479 | 7.211777 | 4.366291 | 1.489175 | 0.704619 | 0.0506 | 0.0446 | 0.0045 | 1.201130 | 1.191907 |
2459808 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.265226 | 7.803610 | -0.688526 | 11.384291 | 6.747107 | 11.673168 | 18.914516 | 18.722699 | 0.0411 | 0.0543 | 0.0020 | 1.271659 | 1.269782 |
2459807 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.241912 | 7.546428 | 1.502527 | 7.104030 | 3.933662 | 9.098966 | 58.419004 | 58.349190 | 0.0372 | 0.0513 | 0.0017 | 1.281679 | 1.278509 |
2459806 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 4.210088 | 6.763426 | -0.364970 | 10.856207 | 6.861196 | 12.864683 | 52.186741 | 53.125400 | 0.0497 | 0.0439 | 0.0045 | 0.000000 | 0.000000 |
2459805 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.153302 | 6.866148 | 0.314461 | 9.968935 | 4.294789 | 8.729755 | 14.316843 | 13.574439 | 0.0369 | 0.0467 | 0.0016 | 1.055714 | 1.049246 |
2459804 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.798421 | 8.391384 | -0.039865 | 9.263193 | 4.585538 | 9.674587 | 9.497625 | 9.130974 | 0.0375 | 0.0431 | 0.0017 | 1.328070 | 1.315039 |
2459803 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 3.690262 | 10.335441 | -0.596750 | 13.055186 | 7.216316 | 10.391659 | 31.272382 | 29.245002 | 0.0397 | 0.0545 | 0.0017 | 1.140173 | 1.146113 |
2459802 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 3.316759 | 8.480970 | -0.708248 | 10.674604 | 10.032657 | 13.871991 | 15.742243 | 16.554655 | 0.0434 | 0.0518 | 0.0024 | 1.121172 | 1.121338 |
2459801 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.494773 | 8.388022 | -0.421559 | 9.095100 | 9.119576 | 16.254785 | 40.942038 | 43.141294 | 0.0417 | 0.0540 | 0.0024 | 0.949665 | 0.974868 |
2459800 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.467008 | 8.755645 | -0.051180 | 8.477940 | 5.766538 | 9.657894 | 45.506167 | 42.718474 | 0.0532 | 0.0623 | 0.0037 | 1.376545 | 1.372893 |
2459799 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 3.836750 | 6.662880 | -0.359690 | 10.257493 | 11.597969 | 18.014902 | 24.005566 | 24.179109 | 0.6850 | 0.6145 | 0.4099 | 4.399614 | 4.415781 |
2459798 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 2.958242 | 8.320616 | -0.666467 | 8.998091 | 4.836233 | 7.451181 | 30.471492 | 28.915784 | 0.6720 | 0.6558 | 0.4084 | 3.831754 | 3.842468 |
2459797 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459796 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 2.887528 | 7.682748 | 0.059723 | 11.833213 | 4.765192 | 8.404664 | 41.552851 | 38.296246 | 0.6497 | 0.6407 | 0.3966 | 0.000000 | 0.000000 |
2459795 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459794 | RF_ok | 100.00% | 0.00% | 5.38% | 0.00% | 100.00% | 0.00% | 2.382250 | 8.014937 | -0.068810 | 8.749335 | 5.323960 | 27.706854 | 58.207602 | 167.779389 | 0.6459 | 0.6295 | 0.3844 | 0.000000 | 0.000000 |
2459793 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 1.880907 | 8.069921 | 2.215057 | 10.905390 | 4.995863 | 13.889634 | 31.925802 | 27.679666 | 0.6259 | 0.6359 | 0.3856 | 2.982764 | 2.983251 |
2459792 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 3.691646 | 6.423616 | 0.546556 | 10.513985 | 10.097952 | 12.120002 | 23.291661 | 23.529211 | 0.6769 | 0.6138 | 0.4085 | 3.587440 | 3.921127 |
2459791 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 2.747208 | 7.817612 | 3.438028 | 12.155158 | 7.327304 | 12.623424 | 12.297598 | 9.197395 | 0.6149 | 0.6256 | 0.3741 | 4.085332 | 4.445243 |
2459790 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 5.166058 | 12.890685 | 2.730255 | 11.693203 | 8.566604 | 17.919689 | 29.912745 | 25.605432 | 0.5949 | 0.6095 | 0.3724 | 2.591773 | 3.071012 |
2459789 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 4.495029 | 11.122131 | -0.424545 | 12.247716 | 8.965758 | 18.794996 | 62.368284 | 62.458349 | 0.5834 | 0.5883 | 0.3642 | 3.002884 | 3.076290 |
2459788 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 3.582475 | 9.428949 | -0.425824 | 13.062041 | 8.539912 | 19.918092 | 28.370899 | 28.583715 | 0.5890 | 0.5951 | 0.3543 | 2.367255 | 2.495980 |
2459787 | RF_ok | 100.00% | 10.75% | 8.06% | 0.00% | 100.00% | 0.00% | 3.498300 | 8.973844 | -0.636046 | 11.113925 | 5.361285 | 12.867358 | 28.620163 | 28.843635 | 0.5471 | 0.5498 | 0.3517 | 2.408651 | 2.585469 |
2459786 | RF_ok | 100.00% | 8.06% | 5.38% | 0.00% | 100.00% | 0.00% | 3.890203 | 9.491182 | 0.366426 | 12.836832 | 10.661760 | 19.507159 | 43.255454 | 43.162365 | 0.5485 | 0.5588 | 0.3368 | 2.131514 | 2.345593 |
2459785 | RF_ok | 100.00% | 2.15% | 0.54% | 0.00% | 100.00% | 0.00% | 3.053244 | 5.187076 | 2.147883 | 18.001831 | 12.075161 | 13.953173 | 16.067075 | 16.032865 | 0.6830 | 0.6203 | 0.3985 | 4.346158 | 4.600352 |
2459784 | RF_ok | 100.00% | 16.13% | 5.38% | 0.00% | 100.00% | 0.00% | 3.919652 | 8.281983 | 2.212842 | 15.088817 | 11.467487 | 19.752873 | 8.038026 | 8.320637 | 0.5204 | 0.5371 | 0.3138 | 9.362386 | 12.666570 |
2459783 | RF_ok | 100.00% | 13.48% | 0.00% | 0.00% | 100.00% | 0.00% | 3.889222 | 13.766613 | 0.273531 | 7.656877 | 4.651249 | 16.006133 | 26.447041 | 23.882894 | 0.5053 | 0.5238 | 0.3074 | 2.150512 | 2.351372 |
2459782 | RF_ok | 100.00% | 26.88% | 8.06% | 0.00% | 100.00% | 0.00% | 4.063028 | 12.506263 | 0.131376 | 3.719643 | 3.168293 | 8.946099 | 18.555234 | 17.090021 | 0.4791 | 0.5032 | 0.2945 | 2.923587 | 3.157756 |
2459781 | RF_ok | 0.00% | 10.43% | 9.13% | 0.00% | 100.00% | 0.00% | -0.000864 | 1.571030 | 0.175106 | 0.531244 | -0.698860 | -1.578728 | -0.071505 | -1.621939 | 0.6518 | 0.6314 | 0.3523 | 2.824054 | 3.025223 |
2459778 | RF_ok | 100.00% | 8.06% | 0.00% | 0.00% | 100.00% | 0.00% | 2.467234 | 8.187259 | -0.057536 | 5.797038 | 4.187600 | 14.313287 | 36.540679 | 34.193648 | 0.6490 | 0.5933 | 0.3951 | 2.914809 | 3.168783 |
2459776 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 7.254614 | 6.603379 | -0.512258 | 6.990708 | 12.622675 | 20.827367 | 20.652030 | 17.520064 | 0.6701 | 0.6251 | 0.4211 | 3.125689 | 3.492019 |
2459774 | RF_ok | - | 3.12% | 0.00% | 0.00% | - | - | nan | nan | nan | nan | nan | nan | nan | nan | 0.6560 | 0.6106 | 0.3948 | nan | nan |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Power | 10.110479 | 3.088383 | 3.442593 | 10.110479 | -0.443180 | 4.366291 | 7.211777 | 0.704619 | 1.489175 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 18.914516 | 7.803610 | 2.265226 | 11.384291 | -0.688526 | 11.673168 | 6.747107 | 18.722699 | 18.914516 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 58.419004 | 7.546428 | 2.241912 | 7.104030 | 1.502527 | 9.098966 | 3.933662 | 58.349190 | 58.419004 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 53.125400 | 4.210088 | 6.763426 | -0.364970 | 10.856207 | 6.861196 | 12.864683 | 52.186741 | 53.125400 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 14.316843 | 2.153302 | 6.866148 | 0.314461 | 9.968935 | 4.294789 | 8.729755 | 14.316843 | 13.574439 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Variability | 9.674587 | 8.391384 | 2.798421 | 9.263193 | -0.039865 | 9.674587 | 4.585538 | 9.130974 | 9.497625 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 31.272382 | 3.690262 | 10.335441 | -0.596750 | 13.055186 | 7.216316 | 10.391659 | 31.272382 | 29.245002 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 16.554655 | 8.480970 | 3.316759 | 10.674604 | -0.708248 | 13.871991 | 10.032657 | 16.554655 | 15.742243 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 43.141294 | 8.388022 | 2.494773 | 9.095100 | -0.421559 | 16.254785 | 9.119576 | 43.141294 | 40.942038 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 45.506167 | 8.755645 | 2.467008 | 8.477940 | -0.051180 | 9.657894 | 5.766538 | 42.718474 | 45.506167 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 24.179109 | 6.662880 | 3.836750 | 10.257493 | -0.359690 | 18.014902 | 11.597969 | 24.179109 | 24.005566 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 30.471492 | 2.958242 | 8.320616 | -0.666467 | 8.998091 | 4.836233 | 7.451181 | 30.471492 | 28.915784 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 41.552851 | 2.887528 | 7.682748 | 0.059723 | 11.833213 | 4.765192 | 8.404664 | 41.552851 | 38.296246 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 167.779389 | 2.382250 | 8.014937 | -0.068810 | 8.749335 | 5.323960 | 27.706854 | 58.207602 | 167.779389 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 31.925802 | 1.880907 | 8.069921 | 2.215057 | 10.905390 | 4.995863 | 13.889634 | 31.925802 | 27.679666 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 23.529211 | 3.691646 | 6.423616 | 0.546556 | 10.513985 | 10.097952 | 12.120002 | 23.291661 | 23.529211 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Variability | 12.623424 | 2.747208 | 7.817612 | 3.438028 | 12.155158 | 7.327304 | 12.623424 | 12.297598 | 9.197395 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 29.912745 | 12.890685 | 5.166058 | 11.693203 | 2.730255 | 17.919689 | 8.566604 | 25.605432 | 29.912745 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 62.458349 | 11.122131 | 4.495029 | 12.247716 | -0.424545 | 18.794996 | 8.965758 | 62.458349 | 62.368284 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 28.583715 | 9.428949 | 3.582475 | 13.062041 | -0.425824 | 19.918092 | 8.539912 | 28.583715 | 28.370899 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Discontinuties | 28.843635 | 3.498300 | 8.973844 | -0.636046 | 11.113925 | 5.361285 | 12.867358 | 28.620163 | 28.843635 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 43.255454 | 9.491182 | 3.890203 | 12.836832 | 0.366426 | 19.507159 | 10.661760 | 43.162365 | 43.255454 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Power | 18.001831 | 5.187076 | 3.053244 | 18.001831 | 2.147883 | 13.953173 | 12.075161 | 16.032865 | 16.067075 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Variability | 19.752873 | 3.919652 | 8.281983 | 2.212842 | 15.088817 | 11.467487 | 19.752873 | 8.038026 | 8.320637 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 26.447041 | 13.766613 | 3.889222 | 7.656877 | 0.273531 | 16.006133 | 4.651249 | 23.882894 | 26.447041 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 18.555234 | 12.506263 | 4.063028 | 3.719643 | 0.131376 | 8.946099 | 3.168293 | 17.090021 | 18.555234 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Shape | 1.571030 | -0.000864 | 1.571030 | 0.175106 | 0.531244 | -0.698860 | -1.578728 | -0.071505 | -1.621939 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | ee Temporal Discontinuties | 36.540679 | 8.187259 | 2.467234 | 5.797038 | -0.057536 | 14.313287 | 4.187600 | 34.193648 | 36.540679 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
206 | N19 | RF_ok | nn Temporal Variability | 20.827367 | 7.254614 | 6.603379 | -0.512258 | 6.990708 | 12.622675 | 20.827367 | 20.652030 | 17.520064 |