Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "223" csv_folder = "/home/obs/src/H5C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H5C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 253 csvs in /home/obs/src/H5C_Notebooks/_rtp_summary_ Found 247 auto_metrics notebooks in /home/obs/src/H5C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H5C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459810 | RF_ok | 0.00% | - | - | - | - | - | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459809 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 3.117577 | 5.193625 | 8.483050 | 15.875447 | 6.165284 | 13.009700 | 0.983895 | -1.525277 | 0.0420 | 0.0591 | 0.0025 | 0.000000 | 0.000000 |
2459808 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 6.512086 | 2.247006 | 9.400847 | 1.076470 | 8.101264 | 1.414317 | 1.217091 | 15.876675 | 0.0433 | 0.0440 | 0.0020 | 0.951543 | 0.954456 |
2459807 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 6.515852 | 2.255387 | 5.892465 | 1.389427 | 6.313602 | -0.005301 | -1.372987 | 16.375519 | 0.0437 | 0.0405 | 0.0023 | 0.865927 | 0.881320 |
2459806 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 5.976002 | 8.380994 | 9.020557 | 15.508477 | 9.837229 | 35.978466 | 0.525349 | 2.475400 | 0.0423 | 0.0540 | 0.0025 | 0.000000 | 0.000000 |
2459805 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 5.836680 | 6.408169 | 7.993254 | 9.945212 | 5.358972 | 20.471508 | 1.842384 | 3.165055 | 0.0404 | 0.0470 | 0.0018 | 0.957802 | 0.951183 |
2459804 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 7.390804 | 12.034989 | 7.967285 | 13.922092 | 6.137382 | 12.756666 | -0.040167 | -0.361838 | 0.0421 | 0.0567 | 0.0032 | 0.942601 | 0.925543 |
2459803 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 9.047081 | 4.713523 | 10.957731 | 2.866522 | 6.481613 | 2.521775 | 0.141347 | 1.927972 | 0.0448 | 0.0436 | 0.0020 | 0.000000 | 0.000000 |
2459802 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 7.521805 | 3.952496 | 9.175457 | 2.520504 | 10.942656 | 4.844131 | 0.546274 | 1.277206 | 0.0448 | 0.0480 | 0.0024 | 0.000000 | 0.000000 |
2459801 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 7.120865 | 6.178909 | 7.448177 | 6.433021 | 10.560181 | 9.597178 | 0.263741 | 5.498571 | 0.0451 | 0.0474 | 0.0017 | 0.000000 | 0.000000 |
2459800 | RF_ok | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 7.368873 | 13.153575 | 6.879922 | 13.260907 | 6.774962 | 12.884206 | -0.578025 | 1.359725 | 0.0633 | 0.0722 | 0.0056 | 1.221825 | 1.221557 |
2459799 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 5.923101 | 9.698676 | 8.753453 | 16.494537 | 14.684107 | 28.028217 | 0.283811 | -1.594136 | 0.7117 | 0.6075 | 0.4210 | 4.512731 | 3.154021 |
2459798 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 7.308102 | 2.800169 | 7.527501 | -0.639556 | 5.813731 | 1.477334 | -0.853712 | 16.805941 | 0.6757 | 0.6416 | 0.4327 | 4.144877 | 3.429542 |
2459797 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 5.780301 | 9.613030 | 7.081815 | 12.277053 | 7.517362 | 10.915674 | -0.828359 | 0.656567 | 0.6639 | 0.6368 | 0.4313 | 4.744371 | 4.220028 |
2459796 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 6.720804 | 3.895193 | 10.547586 | 4.896520 | 7.030542 | 6.627331 | 1.320874 | 2.036498 | 0.6557 | 0.6319 | 0.4134 | 0.000000 | 0.000000 |
2459795 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 7.190175 | 12.957537 | 7.802564 | 13.949159 | 7.905581 | 13.386302 | -0.741346 | 0.466349 | 0.6343 | 0.6091 | 0.4191 | 5.661602 | 5.022690 |
2459794 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 6.768655 | 12.711286 | 8.248792 | 15.114315 | 9.628099 | 16.895872 | -0.973816 | -0.263358 | 0.6586 | 0.6371 | 0.4101 | 0.000000 | 0.000000 |
2459793 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 5.376617 | 9.923256 | 6.971679 | 13.813600 | 8.906011 | 17.197273 | -0.785137 | -0.918298 | 0.6415 | 0.6310 | 0.4071 | 0.000000 | 0.000000 |
2459792 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 5.494609 | 9.575804 | 8.350783 | 16.921038 | 9.173801 | 18.744412 | 0.966683 | -0.640215 | 0.7093 | 0.6082 | 0.4164 | 4.830436 | 3.566975 |
2459791 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 6.402181 | 11.822578 | 10.389915 | 19.471790 | 11.105470 | 18.620071 | 0.843922 | 0.071399 | 0.6307 | 0.6176 | 0.3925 | 3.359302 | 3.134430 |
2459790 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 10.290733 | 18.932280 | 9.534865 | 18.386628 | 14.436727 | 26.067295 | -0.965936 | -1.324599 | 0.6144 | 0.6064 | 0.3926 | 2.443827 | 2.109423 |
2459789 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 8.576212 | 16.435703 | 9.617245 | 19.495763 | 15.508732 | 26.616023 | -0.037500 | 0.689170 | 0.5961 | 0.5875 | 0.3854 | 6.662084 | 5.808800 |
2459788 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 7.286802 | 14.100639 | 10.057551 | 20.747616 | 16.113036 | 28.423850 | -0.996385 | -1.336583 | 0.5987 | 0.5906 | 0.3734 | 3.519877 | 3.642585 |
2459787 | RF_ok | 100.00% | 5.38% | 8.06% | 0.00% | 100.00% | 0.00% | 6.915084 | 13.096680 | 8.161828 | 17.084515 | 10.092496 | 17.702029 | -0.827780 | -1.707864 | 0.5592 | 0.5496 | 0.3672 | 3.291023 | 3.055092 |
2459786 | RF_ok | 100.00% | 0.00% | 2.69% | 0.00% | 100.00% | 0.00% | 7.548689 | 13.619314 | 10.432403 | 19.991449 | 15.996743 | 26.324033 | -0.984033 | -1.450823 | 0.5652 | 0.5579 | 0.3533 | 6.852306 | 5.700490 |
2459785 | RF_ok | 100.00% | 0.00% | 1.07% | 0.00% | 100.00% | 0.00% | 4.503389 | 12.199116 | 14.434731 | 41.316336 | 11.096039 | 34.202562 | -0.552386 | -2.188371 | 0.7122 | 0.5939 | 0.4165 | 0.000000 | 0.000000 |
2459784 | RF_ok | 100.00% | 0.00% | 8.06% | 0.00% | 100.00% | 0.00% | 6.922904 | 18.790413 | 11.709987 | 32.589113 | 15.655944 | 38.535917 | 0.824953 | -1.367187 | 0.5445 | 0.5163 | 0.3442 | 2.533708 | 2.226576 |
2459783 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 13.077605 | 15.800590 | 7.587577 | 8.854528 | 16.017614 | 17.490417 | -0.943821 | -1.579207 | 0.5299 | 0.5062 | 0.3300 | 3.001983 | 2.807975 |
2459782 | RF_ok | 100.00% | 0.00% | 8.06% | 0.00% | 100.00% | 0.00% | 12.075752 | 14.404894 | 3.849737 | 4.343363 | 8.868729 | 9.797308 | -1.347666 | -1.497006 | 0.5050 | 0.4842 | 0.3167 | 3.132362 | 2.837745 |
2459781 | RF_ok | 0.00% | 7.82% | 9.13% | 0.00% | 100.00% | 0.00% | 1.395588 | 1.158582 | 0.381350 | 0.426777 | -1.803530 | 2.334512 | -1.846811 | -1.539845 | 0.6915 | 0.6201 | 0.3561 | 3.757014 | 2.901746 |
2459778 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 7.581398 | 6.731779 | 5.679054 | 4.861504 | 13.897115 | 23.700925 | -2.967968 | 9.116955 | 0.6925 | 0.5794 | 0.4069 | 3.767554 | 2.990866 |
2459776 | RF_ok | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 6.027237 | 3.417068 | 6.123575 | 4.796983 | 18.054501 | 41.516143 | 21.554546 | 54.820456 | 0.7408 | 0.6134 | 0.4198 | 4.293267 | 3.202986 |
2459774 | RF_ok | - | 0.00% | 0.00% | 0.00% | - | - | nan | nan | nan | nan | nan | nan | nan | nan | 0.7088 | 0.5883 | 0.4032 | nan | nan |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | ee Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 15.875447 | 5.193625 | 3.117577 | 15.875447 | 8.483050 | 13.009700 | 6.165284 | -1.525277 | 0.983895 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Discontinuties | 15.876675 | 2.247006 | 6.512086 | 1.076470 | 9.400847 | 1.414317 | 8.101264 | 15.876675 | 1.217091 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Discontinuties | 16.375519 | 2.255387 | 6.515852 | 1.389427 | 5.892465 | -0.005301 | 6.313602 | 16.375519 | -1.372987 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 35.978466 | 5.976002 | 8.380994 | 9.020557 | 15.508477 | 9.837229 | 35.978466 | 0.525349 | 2.475400 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 20.471508 | 5.836680 | 6.408169 | 7.993254 | 9.945212 | 5.358972 | 20.471508 | 1.842384 | 3.165055 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 13.922092 | 12.034989 | 7.390804 | 13.922092 | 7.967285 | 12.756666 | 6.137382 | -0.361838 | -0.040167 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | ee Power | 10.957731 | 9.047081 | 4.713523 | 10.957731 | 2.866522 | 6.481613 | 2.521775 | 0.141347 | 1.927972 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | ee Temporal Variability | 10.942656 | 3.952496 | 7.521805 | 2.520504 | 9.175457 | 4.844131 | 10.942656 | 1.277206 | 0.546274 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | ee Temporal Variability | 10.560181 | 6.178909 | 7.120865 | 6.433021 | 7.448177 | 9.597178 | 10.560181 | 5.498571 | 0.263741 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 13.260907 | 13.153575 | 7.368873 | 13.260907 | 6.879922 | 12.884206 | 6.774962 | 1.359725 | -0.578025 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 28.028217 | 9.698676 | 5.923101 | 16.494537 | 8.753453 | 28.028217 | 14.684107 | -1.594136 | 0.283811 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Discontinuties | 16.805941 | 7.308102 | 2.800169 | 7.527501 | -0.639556 | 5.813731 | 1.477334 | -0.853712 | 16.805941 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 12.277053 | 9.613030 | 5.780301 | 12.277053 | 7.081815 | 10.915674 | 7.517362 | 0.656567 | -0.828359 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | ee Power | 10.547586 | 6.720804 | 3.895193 | 10.547586 | 4.896520 | 7.030542 | 6.627331 | 1.320874 | 2.036498 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 13.949159 | 12.957537 | 7.190175 | 13.949159 | 7.802564 | 13.386302 | 7.905581 | 0.466349 | -0.741346 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 16.895872 | 6.768655 | 12.711286 | 8.248792 | 15.114315 | 9.628099 | 16.895872 | -0.973816 | -0.263358 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 17.197273 | 5.376617 | 9.923256 | 6.971679 | 13.813600 | 8.906011 | 17.197273 | -0.785137 | -0.918298 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 18.744412 | 5.494609 | 9.575804 | 8.350783 | 16.921038 | 9.173801 | 18.744412 | 0.966683 | -0.640215 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 19.471790 | 6.402181 | 11.822578 | 10.389915 | 19.471790 | 11.105470 | 18.620071 | 0.843922 | 0.071399 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 26.067295 | 18.932280 | 10.290733 | 18.386628 | 9.534865 | 26.067295 | 14.436727 | -1.324599 | -0.965936 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 26.616023 | 16.435703 | 8.576212 | 19.495763 | 9.617245 | 26.616023 | 15.508732 | 0.689170 | -0.037500 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 28.423850 | 14.100639 | 7.286802 | 20.747616 | 10.057551 | 28.423850 | 16.113036 | -1.336583 | -0.996385 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 17.702029 | 6.915084 | 13.096680 | 8.161828 | 17.084515 | 10.092496 | 17.702029 | -0.827780 | -1.707864 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 26.324033 | 13.619314 | 7.548689 | 19.991449 | 10.432403 | 26.324033 | 15.996743 | -1.450823 | -0.984033 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Power | 41.316336 | 12.199116 | 4.503389 | 41.316336 | 14.434731 | 34.202562 | 11.096039 | -2.188371 | -0.552386 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 38.535917 | 6.922904 | 18.790413 | 11.709987 | 32.589113 | 15.655944 | 38.535917 | 0.824953 | -1.367187 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 17.490417 | 15.800590 | 13.077605 | 8.854528 | 7.587577 | 17.490417 | 16.017614 | -1.579207 | -0.943821 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Shape | 14.404894 | 14.404894 | 12.075752 | 4.343363 | 3.849737 | 9.797308 | 8.868729 | -1.497006 | -1.347666 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 2.334512 | 1.395588 | 1.158582 | 0.381350 | 0.426777 | -1.803530 | 2.334512 | -1.846811 | -1.539845 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Variability | 23.700925 | 6.731779 | 7.581398 | 4.861504 | 5.679054 | 23.700925 | 13.897115 | 9.116955 | -2.967968 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
223 | N19 | RF_ok | nn Temporal Discontinuties | 54.820456 | 6.027237 | 3.417068 | 6.123575 | 4.796983 | 18.054501 | 41.516143 | 21.554546 | 54.820456 |