Nightly Per-Antenna Quality Summary Notebook¶

Josh Dillon, Last Revised February 2021

This notebooks brings together as much information as possible from ant_metrics, auto_metrics and redcal to help figure out which antennas are working properly and summarizes it in a single giant table. It is meant to be lightweight and re-run as often as necessary over the night, so it can be run when any of those is done and then be updated when another one completes.

Contents:¶

  • Table 1: Overall Array Health
  • Table 2: RTP Per-Antenna Metrics Summary Table
  • Figure 1: Array Plot of Flags and A Priori Statuses
In [1]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
pd.set_option('display.max_rows', 1000)
from hera_qm.metrics_io import load_metric_file
from hera_cal import utils, io, redcal
import glob
import h5py
from copy import deepcopy
from IPython.display import display, HTML
from hera_notebook_templates.utils import status_colors
from hera_mc import mc
from pyuvdata import UVData

%matplotlib inline
%config InlineBackend.figure_format = 'retina'
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
# If you want to run this notebook locally, copy the output of the next cell into the first few lines of this cell.

# JD = "2459122"
# data_path = '/lustre/aoc/projects/hera/H4C/2459122'
# ant_metrics_ext = ".ant_metrics.hdf5"
# redcal_ext = ".maybe_good.omni.calfits"
# nb_outdir = '/lustre/aoc/projects/hera/H4C/h4c_software/H4C_Notebooks/_rtp_summary_'
# good_statuses = "digital_ok,calibration_maintenance,calibration_triage,calibration_ok"
# os.environ["JULIANDATE"] = JD
# os.environ["DATA_PATH"] = data_path
# os.environ["ANT_METRICS_EXT"] = ant_metrics_ext
# os.environ["REDCAL_EXT"] = redcal_ext
# os.environ["NB_OUTDIR"] = nb_outdir
# os.environ["GOOD_STATUSES"] = good_statuses
In [3]:
# Use environment variables to figure out path to data
JD = os.environ['JULIANDATE']
data_path = os.environ['DATA_PATH']
ant_metrics_ext = os.environ['ANT_METRICS_EXT']
redcal_ext = os.environ['REDCAL_EXT']
nb_outdir = os.environ['NB_OUTDIR']
good_statuses = os.environ['GOOD_STATUSES']
print(f'JD = "{JD}"')
print(f'data_path = "{data_path}"')
print(f'ant_metrics_ext = "{ant_metrics_ext}"')
print(f'redcal_ext = "{redcal_ext}"')
print(f'nb_outdir = "{nb_outdir}"')
print(f'good_statuses = "{good_statuses}"')
JD = "2459841"
data_path = "/mnt/sn1/2459841"
ant_metrics_ext = ".ant_metrics.hdf5"
redcal_ext = ".known_good.omni.calfits"
nb_outdir = "/home/obs/src/H6C_Notebooks/_rtp_summary_"
good_statuses = "digital_ok,calibration_maintenance,calibration_triage,calibration_ok"
In [4]:
from astropy.time import Time
utc = Time(JD, format='jd').datetime
print(f'Date: {utc.month}-{utc.day}-{utc.year}')
Date: 9-18-2022
In [5]:
# Per-season options
def ant_to_report_url(ant):
    return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/antenna_report/antenna_{ant}_report.html'

Load Auto Metrics¶

In [6]:
use_auto_metrics = False

# find the auto_metrics file
glob_str = os.path.join(data_path, f'zen.{JD}*.auto_metrics.h5')
auto_metrics_file = sorted(glob.glob(glob_str))

# if it exists, load and extract relevant information
if len(auto_metrics_file) > 0:
    auto_metrics_file = auto_metrics_file[0]
    print(f'Found auto_metrics results file at {auto_metrics_file}.')
    
    auto_metrics = load_metric_file(auto_metrics_file)
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
    auto_ex_ants = auto_metrics['ex_ants']['r2_ex_ants']
    
    use_auto_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping auto_metrics.')
Found auto_metrics results file at /mnt/sn1/2459841/zen.2459841.33442.sum.auto_metrics.h5.

Load Ant Metrics¶

In [7]:
use_ant_metrics = False

# get a list of all ant_metrics files
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{ant_metrics_ext}')
ant_metrics_files = sorted(glob.glob(glob_str))

# if they exist, load as many of them as possible
if len(ant_metrics_files) > 0:
    print(f'Found {len(ant_metrics_files)} ant_metrics files matching glob {glob_str}')
    ant_metrics_apriori_exants = {}
    ant_metrics_xants_dict = {}
    ant_metrics_dead_ants_dict = {}
    ant_metrics_crossed_ants_dict = {}
    ant_metrics_dead_metrics = {}
    ant_metrics_crossed_metrics = {}
    dead_cuts = {}
    crossed_cuts = {}
    for amf in ant_metrics_files:
        with h5py.File(amf, "r") as infile: # use h5py directly since it's much faster than load_metric_file
            # get out results for this file
            dead_cuts[amf] = infile['Metrics']['dead_ant_cut'][()]
            crossed_cuts[amf] = infile['Metrics']['cross_pol_cut'][()]
            xants = infile['Metrics']['xants'][:]
            dead_ants = infile['Metrics']['dead_ants'][:]
            crossed_ants = infile['Metrics']['crossed_ants'][:]        
            try:
                # look for ex_ants in history
                ex_ants_string = infile['Header']['history'][()].decode()
                ex_ants_string = ex_ants_string.split('--apriori_xants')[1]
                ex_ants_string = ex_ants_string.split('--')[0].strip()
            except:
                ex_ants_string = ''
                    
            # This only works for the new correlation-matrix-based ant_metrics
            if 'corr' in infile['Metrics']['final_metrics'] and 'corrXPol' in infile['Metrics']['final_metrics']:
                ant_metrics_dead_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corr'][ant][()]
                                                 for ant in infile['Metrics']['final_metrics']['corr']}
                ant_metrics_crossed_metrics[amf] = {eval(ant): infile['Metrics']['final_metrics']['corrXPol'][ant][()]
                                                    for ant in infile['Metrics']['final_metrics']['corrXPol']}                       
            else:
                raise(KeywordError)
        
        # organize results by file
        ant_metrics_xants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in xants]
        ant_metrics_dead_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in dead_ants]
        ant_metrics_crossed_ants_dict[amf] = [(int(ant[0]), ant[1].decode()) for ant in crossed_ants]
        ant_metrics_apriori_exants[amf] = [int(ant) for ant in ex_ants_string.split()]
    
    dead_cut = np.median(list(dead_cuts.values()))
    crossed_cut = np.median(list(crossed_cuts.values()))
        
    use_ant_metrics = True
else:
    print(f'No files found matching glob {glob_str}. Skipping ant_metrics.')
Found 1529 ant_metrics files matching glob /mnt/sn1/2459841/zen.2459841.?????.sum.ant_metrics.hdf5

Load chi^2 info from redcal¶

In [8]:
use_redcal = False
glob_str = os.path.join(data_path, f'zen.{JD}.?????.sum{redcal_ext}')

redcal_files = sorted(glob.glob(glob_str))
if len(redcal_files) > 0:
    print(f'Found {len(redcal_files)} ant_metrics files matching glob {glob_str}')
    post_redcal_ant_flags_dict = {}
    flagged_by_redcal_dict = {}
    cspa_med_dict = {}
    for cal in redcal_files:
        hc = io.HERACal(cal)
        _, flags, cspa, chisq = hc.read()
        cspa_med_dict[cal] = {ant: np.nanmedian(cspa[ant], axis=1) for ant in cspa}

        post_redcal_ant_flags_dict[cal] = {ant: np.all(flags[ant]) for ant in flags}
        # check history to distinguish antennas flagged going into redcal from ones flagged during redcal
        tossed_antenna_lines =  hc.history.replace('\n','').split('Throwing out antenna ')[1:]
        flagged_by_redcal_dict[cal] = sorted([int(line.split(' ')[0]) for line in tossed_antenna_lines])
        
    use_redcal = True
else:
    print(f'No files found matching glob {glob_str}. Skipping redcal chisq.')
No files found matching glob /mnt/sn1/2459841/zen.2459841.?????.sum.known_good.omni.calfits. Skipping redcal chisq.

Figure out some general properties¶

In [9]:
# Parse some general array properties, taking into account the fact that we might be missing some of the metrics
ants = []
pols = []
antpol_pairs = []

if use_auto_metrics:
    ants = sorted(set(bl[0] for bl in auto_metrics['modzs']['r2_shape_modzs']))
    pols = sorted(set(bl[2] for bl in auto_metrics['modzs']['r2_shape_modzs']))
if use_ant_metrics:
    antpol_pairs = sorted(set([antpol for dms in ant_metrics_dead_metrics.values() for antpol in dms.keys()]))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))
if use_redcal:
    antpol_pairs = sorted(set([ant for cspa in cspa_med_dict.values() for ant in cspa.keys()]) | set(antpol_pairs))
    antpols = sorted(set(antpol[1] for antpol in antpol_pairs))
    ants = sorted(set(antpol[0] for antpol in antpol_pairs) | set(ants))
    pols = sorted(set(utils.join_pol(ap, ap) for ap in antpols) | set(pols))

# Figure out remaining antennas not in data and also LST range
data_files = sorted(glob.glob(os.path.join(data_path, 'zen.*.sum.uvh5')))
hd = io.HERAData(data_files[0])
unused_ants = [ant for ant in hd.antpos if ant not in ants]    
hd_last = io.HERAData(data_files[-1])

Load a priori antenna statuses and node numbers¶

In [10]:
# try to load a priori antenna statusesm but fail gracefully if this doesn't work.
a_priori_statuses = {ant: 'Not Found' for ant in ants}
nodes = {ant: np.nan for ant in ants + unused_ants}
try:
    from hera_mc import cm_hookup

    # get node numbers
    hookup = cm_hookup.get_hookup('default')
    for ant_name in hookup:
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in nodes:
            if hookup[ant_name].get_part_from_type('node')['E<ground'] is not None:
                nodes[ant] = int(hookup[ant_name].get_part_from_type('node')['E<ground'][1:])
    
    # get apriori antenna status
    for ant_name, data in hookup.items():
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in a_priori_statuses:
            a_priori_statuses[ant] = data.apriori

except Exception as err:
    print(f'Could not load node numbers and a priori antenna statuses.\nEncountered {type(err)} with message: {err}')

Summarize auto metrics¶

In [11]:
if use_auto_metrics:
    # Parse modzs
    modzs_to_check = {'Shape': 'r2_shape_modzs', 'Power': 'r2_power_modzs', 
                      'Temporal Variability': 'r2_temp_var_modzs', 'Temporal Discontinuties': 'r2_temp_diff_modzs'}
    worst_metrics = []
    worst_zs = []
    all_modzs = {}
    binary_flags = {rationale: [] for rationale in modzs_to_check}

    for ant in ants:
        # parse modzs and figure out flag counts
        modzs = {f'{pol} {rationale}': auto_metrics['modzs'][dict_name][(ant, ant, pol)] 
                 for rationale, dict_name in modzs_to_check.items() for pol in pols}
        for pol in pols:
            for rationale, dict_name in modzs_to_check.items():
                binary_flags[rationale].append(auto_metrics['modzs'][dict_name][(ant, ant, pol)] > mean_round_modz_cut)

        # parse out all metrics for dataframe
        for k in modzs:
            col_label = k + ' Modified Z-Score'
            if col_label in all_modzs:
                all_modzs[col_label].append(modzs[k])
            else:
                all_modzs[col_label] = [modzs[k]]
                
    mean_round_modz_cut = auto_metrics['parameters']['mean_round_modz_cut']
else:
    mean_round_modz_cut = 0

Summarize ant metrics¶

In [12]:
if use_ant_metrics:
    a_priori_flag_frac = {ant: np.mean([ant in apxa for apxa in ant_metrics_apriori_exants.values()]) for ant in ants}
    dead_ant_frac = {ap: {ant: np.mean([(ant, ap) in das for das in ant_metrics_dead_ants_dict.values()])
                                 for ant in ants} for ap in antpols}
    crossed_ant_frac = {ant: np.mean([np.any([(ant, ap) in cas for ap in antpols])
                                      for cas in ant_metrics_crossed_ants_dict.values()]) for ant in ants}
    ant_metrics_xants_frac_by_antpol = {antpol: np.mean([antpol in amx for amx in ant_metrics_xants_dict.values()]) for antpol in antpol_pairs}
    ant_metrics_xants_frac_by_ant = {ant: np.mean([np.any([(ant, ap) in amx for ap in antpols])
                                     for amx in ant_metrics_xants_dict.values()]) for ant in ants}
    average_dead_metrics = {ap: {ant: np.nanmean([dm.get((ant, ap), np.nan) for dm in ant_metrics_dead_metrics.values()]) 
                                 for ant in ants} for ap in antpols}
    average_crossed_metrics = {ant: np.nanmean([cm.get((ant, ap), np.nan) for ap in antpols 
                                                for cm in ant_metrics_crossed_metrics.values()]) for ant in ants}
else:
    dead_cut = 0.4
    crossed_cut = 0.0

Summarize redcal chi^2 metrics¶

In [13]:
if use_redcal:
    cspa = {ant: np.nanmedian(np.hstack([cspa_med_dict[cal][ant] for cal in redcal_files])) for ant in antpol_pairs}
    redcal_prior_flag_frac = {ant: np.mean([np.any([afd[ant, ap] and not ant in flagged_by_redcal_dict[cal] for ap in antpols])
                                            for cal, afd in post_redcal_ant_flags_dict.items()]) for ant in ants}
    redcal_flagged_frac = {ant: np.mean([ant in fbr for fbr in flagged_by_redcal_dict.values()]) for ant in ants}

Get FEM switch states¶

In [14]:
HHautos = sorted(glob.glob(f"{data_path}/zen.{JD}.*.sum.autos.uvh5"))
diffautos = sorted(glob.glob(f"{data_path}/zen.{JD}.*.diff.autos.uvh5"))

try:
    db = mc.connect_to_mc_db(None)
    session = db.sessionmaker()
    startJD = float(HHautos[0].split('zen.')[1].split('.sum')[0])
    stopJD = float(HHautos[-1].split('zen.')[1].split('.sum')[0])
    startTime = Time(startJD,format='jd')
    stopTime = Time(stopJD,format='jd')
    res = session.get_antenna_status(starttime=startTime, stoptime=stopTime)
    fem_switches = {}
    if len(res) == 0:
        femState = None
    else:
        for antpol in res:
            fem_switches[(antpol.antenna_number, antpol.antenna_feed_pol)] = antpol.fem_switch
    femState = (max(set(list(fem_switches.values())), key = list(fem_switches.values()).count)) 
except Exception as e:
    print(e)
    femState = None

Find X-engine Failures¶

In [15]:
read_inds = [1, len(HHautos)//2, -2]
x_status = [1,1,1,1,1,1,1,1]
s = UVData()
s.read(HHautos[1])

nants = len(s.get_ants())
freqs = s.freq_array[0]*1e-6
nfreqs = len(freqs)

antCon = {a: None for a in ants}
rightAnts = []
for i in read_inds:
    s = UVData()
    d = UVData()
    s.read(HHautos[i])
    d.read(diffautos[i])
    for pol in [0,1]:
        sm = np.abs(s.data_array[:,0,:,pol])
        df = np.abs(d.data_array[:,0,:,pol])
        sm = np.r_[sm, np.nan + np.zeros((-len(sm) % nants,len(freqs)))]
        sm = np.nanmean(sm.reshape(-1,nants,nfreqs),axis=1)
        df = np.r_[df, np.nan + np.zeros((-len(df) % nants,len(freqs)))]
        df = np.nanmean(df.reshape(-1,nants,nfreqs),axis=1)

        evens = (sm + df)/2
        odds = (sm - df)/2
        rat = np.divide(evens,odds)
        rat = np.nan_to_num(rat)
        for xbox in range(0,8):
            xavg = np.nanmean(rat[:,xbox*192:(xbox+1)*192],axis=1)
            if np.nanmax(xavg)>1.5 or np.nanmin(xavg)<0.5:
                x_status[xbox] = 0
    for ant in ants:
        for pol in ["xx", "yy"]:
            if antCon[ant] is False:
                continue
            spectrum = s.get_data(ant, ant, pol)
            stdev = np.std(spectrum)
            med = np.median(np.abs(spectrum))
            if (femState == "load" or femState == 'noise') and 80000 < stdev <= 4000000 and antCon[ant] is not False:
                antCon[ant] = True
            elif femState == "antenna" and stdev > 500000 and med > 950000 and antCon[ant] is not False:
                antCon[ant] = True
            else:
                antCon[ant] = False
            if np.min(np.abs(spectrum)) < 100000:
                antCon[ant] = False
for ant in ants:
    if antCon[ant] is True:
        rightAnts.append(ant)
            
x_status_str = ''
for i,x in enumerate(x_status):
    if x==0:
        x_status_str += '\u274C '
    else:
        x_status_str += '\u2705 '

Build Overall Health DataFrame¶

In [16]:
def comma_sep_paragraph(vals, chars_per_line=40):
    outstrs = []
    for val in vals:
        if (len(outstrs) == 0) or (len(outstrs[-1]) > chars_per_line):
            outstrs.append(str(val))
        else:
            outstrs[-1] += ', ' + str(val)
    return ',<br>'.join(outstrs)
In [17]:
# Time data
to_show = {'JD': [JD]}
to_show['Date'] = f'{utc.month}-{utc.day}-{utc.year}'
to_show['LST Range'] = f'{hd.lsts[0] * 12 / np.pi:.3f} -- {hd_last.lsts[-1] * 12 / np.pi:.3f} hours'

# X-engine status
to_show['X-Engine Status'] = x_status_str

# Files
to_show['Number of Files'] = len(data_files)

# Antenna Calculations
to_show['Total Number of Antennas'] = len(ants)

to_show[' '] = ''
to_show['OPERATIONAL STATUS SUMMARY'] = ''

status_count = {status: 0 for status in status_colors}
for ant, status in a_priori_statuses.items():
    if status in status_count:
        status_count[status] = status_count[status] + 1
    else:
        status_count[status] = 1
to_show['Antenna A Priori Status Count'] = '<br>'.join([f'{status}: {status_count[status]}' for status in status_colors if status in status_count and status_count[status] > 0])

to_show['Commanded Signal Source'] = femState
to_show['Antennas in Commanded State'] = f'{len(rightAnts)} / {len(ants)} ({len(rightAnts) / len(ants):.1%})'

if use_ant_metrics:
    to_show['Cross-Polarized Antennas'] = ', '.join([str(ant) for ant in ants if (np.max([dead_ant_frac[ap][ant] for ap in antpols]) + crossed_ant_frac[ant] == 1) 
                                                                                 and (crossed_ant_frac[ant] > .5)])

# Node calculations
nodes_used = set([nodes[ant] for ant in ants if np.isfinite(nodes[ant])])
to_show['Total Number of Nodes'] = len(nodes_used)
if use_ant_metrics:
    node_off = {node: True for node in nodes_used}
    not_correlating = {node: True for node in nodes_used}
    for ant in ants:
        for ap in antpols:
            if np.isfinite(nodes[ant]):
                if np.isfinite(average_dead_metrics[ap][ant]):
                    node_off[nodes[ant]] = False
                if dead_ant_frac[ap][ant] < 1:
                    not_correlating[nodes[ant]] = False
    to_show['Nodes Registering 0s'] = ', '.join([f'N{n:02}' for n in sorted([node for node in node_off if node_off[node]])])
    to_show['Nodes Not Correlating'] = ', '.join([f'N{n:02}' for n in sorted([node for node in not_correlating if not_correlating[node] and not node_off[node]])])

# Pipeline calculations    
to_show['  '] = ''
to_show['NIGHTLY ANALYSIS SUMMARY'] = ''
    
all_flagged_ants = []
if use_ant_metrics:
    to_show['Ant Metrics Done?'] = '\u2705'
    ant_metrics_flagged_ants = [ant for ant in ants if ant_metrics_xants_frac_by_ant[ant] > 0]
    all_flagged_ants.extend(ant_metrics_flagged_ants)
    to_show['Ant Metrics Flagged Antennas'] = f'{len(ant_metrics_flagged_ants)} / {len(ants)} ({len(ant_metrics_flagged_ants) / len(ants):.1%})' 
else:
    to_show['Ant Metrics Done?'] = '\u274C'
if use_auto_metrics:
    to_show['Auto Metrics Done?'] = '\u2705'
    auto_metrics_flagged_ants = [ant for ant in ants if ant in auto_ex_ants]
    all_flagged_ants.extend(auto_metrics_flagged_ants)    
    to_show['Auto Metrics Flagged Antennas'] = f'{len(auto_metrics_flagged_ants)} / {len(ants)} ({len(auto_metrics_flagged_ants) / len(ants):.1%})' 
else:
    to_show['Auto Metrics Done?'] = '\u274C'
if use_redcal:
    to_show['Redcal Done?'] = '\u2705'    
    redcal_flagged_ants = [ant for ant in ants if redcal_flagged_frac[ant] > 0]
    all_flagged_ants.extend(redcal_flagged_ants)    
    to_show['Redcal Flagged Antennas'] = f'{len(redcal_flagged_ants)} / {len(ants)} ({len(redcal_flagged_ants) / len(ants):.1%})' 
else:
    to_show['Redcal Done?'] = '\u274C' 
to_show['Never Flagged Antennas'] = f'{len(ants) - len(set(all_flagged_ants))} / {len(ants)} ({(len(ants) - len(set(all_flagged_ants))) / len(ants):.1%})'

# Count bad antennas with good statuses and vice versa
n_apriori_good = len([ant for ant in ants if a_priori_statuses[ant] in good_statuses.split(',')])
apriori_good_flagged = []
aprior_bad_unflagged = []
for ant in ants:
    if ant in set(all_flagged_ants) and a_priori_statuses[ant] in good_statuses.split(','):
        apriori_good_flagged.append(ant)
    elif ant not in set(all_flagged_ants) and a_priori_statuses[ant] not in good_statuses.split(','):
        aprior_bad_unflagged.append(ant)
to_show['A Priori Good Antennas Flagged'] = f'{len(apriori_good_flagged)} / {n_apriori_good} total a priori good antennas:<br>' + \
                                            comma_sep_paragraph(apriori_good_flagged)
to_show['A Priori Bad Antennas Not Flagged'] = f'{len(aprior_bad_unflagged)} / {len(ants) - n_apriori_good} total a priori bad antennas:<br>' + \
                                            comma_sep_paragraph(aprior_bad_unflagged)

# Apply Styling
df = pd.DataFrame(to_show)
divider_cols = [df.columns.get_loc(col) for col in ['NIGHTLY ANALYSIS SUMMARY', 'OPERATIONAL STATUS SUMMARY']]
try:
    to_red_columns = [df.columns.get_loc(col) for col in ['Cross-Polarized Antennas', 'Nodes Registering 0s', 
                                                          'Nodes Not Correlating', 'A Priori Good Antennas Flagged']]
except:
    to_red_columns = []
def red_specific_cells(x):
    df1 = pd.DataFrame('', index=x.index, columns=x.columns)
    for col in to_red_columns:
        df1.iloc[col] = 'color: red'
    return df1

df = df.T
table = df.style.hide_columns().apply(red_specific_cells, axis=None)
for col in divider_cols:
    table = table.set_table_styles([{"selector":f"tr:nth-child({col+1})", "props": [("background-color", "black"), ("color", "white")]}], overwrite=False)

Table 1: Overall Array Health¶

In [18]:
HTML(table.render())
Out[18]:
JD 2459841
Date 9-18-2022
LST Range 20.252 -- 5.546 hours
X-Engine Status ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅
Number of Files 1670
Total Number of Antennas 109
OPERATIONAL STATUS SUMMARY
Antenna A Priori Status Count dish_maintenance: 2
dish_ok: 1
RF_maintenance: 24
RF_ok: 6
digital_maintenance: 3
digital_ok: 59
not_connected: 14
Commanded Signal Source None
Antennas in Commanded State 0 / 109 (0.0%)
Cross-Polarized Antennas
Total Number of Nodes 11
Nodes Registering 0s N09, N11, N18
Nodes Not Correlating N01, N08, N12
NIGHTLY ANALYSIS SUMMARY
Ant Metrics Done? ✅
Ant Metrics Flagged Antennas 98 / 109 (89.9%)
Auto Metrics Done? ✅
Auto Metrics Flagged Antennas 94 / 109 (86.2%)
Redcal Done? ❌
Never Flagged Antennas 0 / 109 (0.0%)
A Priori Good Antennas Flagged 59 / 59 total a priori good antennas:
3, 5, 15, 16, 17, 29, 30, 84, 85, 86, 88, 91,
93, 94, 101, 103, 105, 106, 107, 108, 109,
111, 112, 121, 122, 123, 124, 127, 128, 129,
130, 140, 141, 142, 143, 144, 147, 156, 157,
158, 160, 161, 162, 163, 164, 165, 167, 169,
170, 179, 181, 183, 184, 185, 186, 187, 189,
190, 191
A Priori Bad Antennas Not Flagged 0 / 50 total a priori bad antennas:
In [19]:
# write to csv
outpath = os.path.join(nb_outdir, f'array_health_table_{JD}.csv')
print(f'Now saving Table 2 to a csv at {outpath}')
df.replace({'\u2705': 'Y'}, regex=True).replace({'\u274C': 'N'}, regex=True).replace({'<br>': ' '}, regex=True).to_csv(outpath)
Now saving Table 2 to a csv at /home/obs/src/H6C_Notebooks/_rtp_summary_/array_health_table_2459841.csv

Build DataFrame¶

In [20]:
# build dataframe
to_show = {'Ant': [f'<a href="{ant_to_report_url(ant)}" target="_blank">{ant}</a>' for ant in ants],
           'Node': [f'N{nodes[ant]:02}' for ant in ants], 
           'A Priori Status': [a_priori_statuses[ant] for ant in ants]}
           #'Worst Metric': worst_metrics, 'Worst Modified Z-Score': worst_zs}
df = pd.DataFrame(to_show)

# create bar chart columns for flagging percentages:
bar_cols = {}
if use_auto_metrics:
    bar_cols['Auto Metrics Flags'] = [float(ant in auto_ex_ants) for ant in ants]
if use_ant_metrics:
    if np.sum(list(a_priori_flag_frac.values())) > 0:  # only include this col if there are any a priori flags
        bar_cols['A Priori Flag Fraction in Ant Metrics'] = [a_priori_flag_frac[ant] for ant in ants]
    for ap in antpols:
        bar_cols[f'Dead Fraction in Ant Metrics ({ap})'] = [dead_ant_frac[ap][ant] for ant in ants]
    bar_cols['Crossed Fraction in Ant Metrics'] = [crossed_ant_frac[ant] for ant in ants]
if use_redcal:
    bar_cols['Flag Fraction Before Redcal'] = [redcal_prior_flag_frac[ant] for ant in ants]
    bar_cols['Flagged By Redcal chi^2 Fraction'] = [redcal_flagged_frac[ant] for ant in ants]  
for col in bar_cols:
    df[col] = bar_cols[col]

# add auto_metrics
if use_auto_metrics:
    for label, modz in all_modzs.items():
        df[label] = modz
z_score_cols = [col for col in df.columns if 'Modified Z-Score' in col]        
        
# add ant_metrics
ant_metrics_cols = {}
if use_ant_metrics:
    for ap in antpols:
        ant_metrics_cols[f'Average Dead Ant Metric ({ap})'] = [average_dead_metrics[ap][ant] for ant in ants]
    ant_metrics_cols['Average Crossed Ant Metric'] = [average_crossed_metrics[ant] for ant in ants]
    for col in ant_metrics_cols:
        df[col] = ant_metrics_cols[col]   

# add redcal chisq
redcal_cols = []
if use_redcal:
    for ap in antpols:
        col_title = f'Median chi^2 Per Antenna ({ap})'
        df[col_title] = [cspa[ant, ap] for ant in ants]
        redcal_cols.append(col_title)

# sort by node number and then by antenna number within nodes
df.sort_values(['Node', 'Ant'], ascending=True)

# style dataframe
table = df.style.hide_index()\
          .applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
          .background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=z_score_cols) \
          .background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=redcal_cols) \
          .applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=z_score_cols) \
          .bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
          .format({col: '{:,.4f}'.format for col in z_score_cols}) \
          .format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
          .format({col: '{:,.2%}'.format for col in bar_cols}) \
          .applymap(lambda val: 'font-weight: bold', subset=['Ant']) \
          .set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])

Table 2: RTP Per-Antenna Metrics Summary Table¶

This admittedly very busy table incorporates summary information about all antennas in the array. Its columns depend on what information is available when the notebook is run (i.e. whether auto_metrics, ant_metrics, and/or redcal is done). These can be divided into 5 sections:

Basic Antenna Info: antenna number, node, and its a priori status.

Flag Fractions: Fraction of the night that an antenna was flagged for various reasons. Note that auto_metrics flags antennas for the whole night, so it'll be 0% or 100%.

auto_metrics Details: If auto_metrics is included, this section shows the modified Z-score signifying how much of an outlier each antenna and polarization is in each of four categories: bandpass shape, overall power, temporal variability, and temporal discontinuities. Bold red text indicates that this is a reason for flagging the antenna. It is reproduced from the auto_metrics_inspect.ipynb nightly notebook, so check that out for more details on the precise metrics.

ant_metrics Details: If ant_metrics is included, this section shows the average correlation-based metrics for antennas over the whole night. Low "dead ant" metrics (nominally below 0.4) indicate antennas not correlating with the rest of the array. Negative "crossed ant" metrics indicate antennas that show stronger correlations in their cross-pols than their same-pols, indicating that the two polarizations are probably swapped. Bold text indicates that the average is below the threshold for flagging.

redcal chi^2 Details: If redcal is included, this shows the median chi^2 per antenna. This would be 1 in an ideal array. Antennas are thrown out when they they are outliers in their median chi^2, usually greater than 4-sigma outliers in modified Z-score.

In [21]:
HTML(table.render())
Out[21]:
Ant Node A Priori Status Auto Metrics Flags Dead Fraction in Ant Metrics (Jee) Dead Fraction in Ant Metrics (Jnn) Crossed Fraction in Ant Metrics ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score Average Dead Ant Metric (Jee) Average Dead Ant Metric (Jnn) Average Crossed Ant Metric
3 N01 digital_ok 0.00% 100.00% 100.00% 0.00% 1.026254 0.130047 -0.792910 1.537038 0.919595 -1.814375 0.669910 0.253573 0.027895 0.024719 0.001836
4 N01 RF_maintenance 0.00% 100.00% 100.00% 0.00% -0.626950 0.442729 0.704843 1.367289 0.254969 -0.162482 1.187060 -0.241095 0.024907 0.024250 0.000708
5 N01 digital_ok 100.00% 100.00% 100.00% 0.00% -0.210734 4.949861 0.013349 0.715513 -0.083929 1.243745 1.397025 -0.164168 0.025011 0.024962 0.000620
15 N01 digital_ok 0.00% 100.00% 100.00% 0.00% -0.237131 -0.851532 1.416946 0.931757 -1.595825 0.698787 -0.751638 2.913423 0.028317 0.025071 0.002049
16 N01 digital_ok 100.00% 100.00% 100.00% 0.00% 0.110044 0.411262 -0.565121 0.061823 6.852922 1.899204 1.508892 0.784545 0.024682 0.024284 0.000604
17 N01 digital_ok 0.00% 100.00% 100.00% 0.00% -0.641643 -0.838601 0.122763 0.910825 -0.007276 -1.793609 -0.308452 0.032812 0.024771 0.024190 0.000635
18 N01 RF_maintenance 100.00% 100.00% 100.00% 0.00% 10.363779 29.568015 16.484832 35.972389 84.496382 61.132103 96.812284 15.614050 0.028660 0.030112 0.001198
22 N06 not_connected 100.00% 0.00% 0.00% 0.00% 18.960633 41.481256 106.843590 122.601746 266.618362 113.193094 87.134675 52.899585 0.638987 0.693173 0.229749
27 N01 RF_maintenance 100.00% 100.00% 100.00% 0.00% 14.176609 16.670217 4.615826 4.621565 4.917992 5.364263 10.198939 7.635722 0.024465 0.035864 0.003470
28 N01 RF_maintenance 100.00% 100.00% 100.00% 0.00% 1.769838 44.939756 -0.789702 46.217821 -1.577821 18.142731 1.054512 11.641806 0.025307 0.027929 0.002833
29 N01 digital_ok 0.00% 100.00% 100.00% 0.00% 0.669743 2.689893 0.611140 2.292778 -0.326158 1.145428 -0.032812 -0.679071 0.027567 0.025267 0.001687
30 N01 digital_ok 100.00% 100.00% 100.00% 0.00% 4.011404 -0.620182 0.255598 -1.030054 41.673645 2.530882 1.854411 2.719422 0.024569 0.024496 0.000491
34 N06 not_connected 100.00% 100.00% 0.00% 0.00% 10.599907 44.902973 32.519816 122.025821 51.116090 97.172070 22.255647 8.216420 0.046592 0.738445 0.353188
35 N06 not_connected 100.00% 0.00% 0.00% 0.00% 40.725691 44.737522 123.135288 121.933350 169.895447 76.180809 11.517915 3.193536 0.754906 0.734329 0.323518
47 N06 not_connected 100.00% 100.00% 0.00% 0.00% 11.580465 42.339112 33.828586 107.459002 61.537216 269.809453 28.430298 33.496835 0.043485 0.750361 0.399541
48 N06 not_connected 100.00% 100.00% 100.00% 0.00% 63.247197 60.254380 72.102045 74.242901 58.350812 61.713181 43.956170 44.148228 0.032473 0.031779 0.000215
49 N06 not_connected 100.00% 0.00% 0.00% 0.00% 39.521126 44.177928 105.838936 117.449811 141.487377 136.122482 22.879392 15.842605 0.758451 0.736544 0.310818
61 N06 not_connected 100.00% 0.00% 0.00% 0.00% 33.801395 36.439475 94.739649 99.610490 362.335033 265.834965 27.049059 39.785851 0.747610 0.723876 0.380614
62 N06 not_connected 100.00% 100.00% 100.00% 0.00% 33.826922 40.616141 54.006353 61.944526 52.294359 53.143222 15.330640 12.055189 0.033209 0.038828 0.006446
63 N06 not_connected 100.00% 100.00% 100.00% 0.00% 34.717440 14.854115 51.152615 33.347614 11.851158 4.326986 2.255073 4.047091 0.053277 0.072435 0.028518
64 N06 not_connected 100.00% 0.00% 0.00% 0.00% 37.967808 44.607810 108.274618 116.050788 119.574361 128.797626 6.813511 2.276928 0.725315 0.713569 0.335674
77 N06 not_connected 100.00% 100.00% 100.00% 0.00% 43.082983 25.294625 56.314161 55.986203 26.622803 22.587564 18.643644 8.649848 0.030207 0.030736 0.001255
78 N06 not_connected 100.00% 100.00% 100.00% 0.00% 35.332179 29.317593 54.816724 53.257811 33.795094 30.839767 7.578789 9.854823 0.060321 0.068890 0.030734
84 N08 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
85 N08 digital_ok 100.00% 100.00% 100.00% 0.00% 1.509472 12.502050 9.916534 7.761031 0.433890 -0.419165 0.044543 0.735802 0.039722 0.034383 0.004458
86 N08 digital_ok 100.00% 100.00% 100.00% 0.00% 0.831098 10.931708 7.830049 6.050508 10.384722 0.296124 0.316800 1.019718 0.038974 0.033500 0.003892
87 N08 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
88 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
89 N09 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
90 N09 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
91 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
92 N10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 12.879782 13.913894 2.130608 4.227433 3.112111 12.145674 1.487529 4.952224 0.027851 0.025361 0.001816
93 N10 digital_ok 100.00% 100.00% 100.00% 0.00% 12.892162 2.343546 3.465001 -0.446526 0.979482 -0.283683 2.208889 1.993814 0.024017 0.024149 0.000503
94 N10 digital_ok 100.00% 100.00% 100.00% 0.00% 1.844937 0.288589 0.840234 -0.864946 23.838755 8.944076 5.546136 2.492797 0.024365 0.024179 0.000476
101 N08 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
102 N08 RF_maintenance 100.00% 100.00% 100.00% 0.00% 20.650875 36.071467 40.834108 45.656430 8181.455992 9065.968402 15735.998054 16686.876461 0.030984 0.032107 0.003617
103 N08 digital_ok 100.00% 100.00% 100.00% 0.00% 21.326026 15.218873 7.795109 7.315244 3.954298 0.157723 9.113807 5.547517 0.024278 0.024192 0.000538
104 N08 RF_maintenance 100.00% 100.00% 100.00% 0.00% 18.547226 182.746763 8.005962 75.248053 1.409557 20.069535 4.129375 57.115607 0.027361 0.019638 0.005733
105 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
106 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
107 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
108 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
109 N10 digital_ok 100.00% 100.00% 100.00% 0.00% 1.063289 16.167669 -0.458133 3.375338 0.178580 2.805329 1.317490 1.514526 0.027243 0.023695 0.001908
110 N10 RF_maintenance 100.00% 100.00% 100.00% 0.00% 39.948984 29.273405 5.537389 8.427225 10.954306 3.197943 3.090552 4.040658 0.024060 0.022953 0.000654
111 N10 digital_ok 100.00% 100.00% 100.00% 0.00% -1.002495 16.453504 -0.338521 4.039492 0.547496 3.458680 1.170336 2.137532 0.024659 0.023338 0.000839
112 N10 digital_ok 0.00% 100.00% 100.00% 0.00% 2.036700 2.898886 -0.307832 -0.603929 -0.495964 3.101210 -0.708765 -1.044594 0.026842 0.024534 0.001496
115 N11 not_connected 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
120 N08 RF_maintenance 100.00% 100.00% 100.00% 0.00% 20.274982 4.713872 7.075587 13.585180 6.663972 5.659218 9.153246 18.618132 0.030906 0.026866 0.002815
121 N08 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
122 N08 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
123 N08 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
124 N09 digital_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
125 N09 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
126 N09 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
127 N10 digital_ok 0.00% 100.00% 100.00% 0.00% -0.806743 0.311424 -0.477584 -0.438714 0.273075 2.125282 -0.619319 0.510271 0.024873 0.024306 0.000724
128 N10 digital_ok 100.00% 100.00% 100.00% 0.00% -0.951964 4.501729 0.060560 0.145461 -1.148896 5.885939 0.871352 0.381836 0.024460 0.024754 0.000624
129 N10 digital_ok 100.00% 0.00% 0.00% 0.00% 38.320285 49.302056 54.071566 57.834521 298.369530 440.410178 43.464644 55.525208 0.770250 0.735820 0.344922
130 N10 digital_ok 0.00% 100.00% 100.00% 0.00% -0.420987 -0.103526 -0.345015 -0.229749 1.654824 0.536404 -0.199892 0.511318 0.025927 0.024524 0.000490
133 N11 not_connected 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
135 N12 digital_maintenance 0.00% 100.00% 100.00% 0.00% 1.316608 3.463715 -0.780282 2.268893 -0.128023 -1.312248 1.057442 0.131130 0.027272 0.024485 0.001884
136 N12 digital_maintenance 0.00% 100.00% 100.00% 0.00% -0.094303 -0.855900 0.241596 0.204507 0.312880 -0.683287 0.037173 -0.772949 0.025379 0.024747 0.000712
140 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 14.434220 15.395414 2.678394 4.807848 3.404684 3.920465 1.849266 2.496990 0.027870 0.025880 0.001832
141 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 0.436855 10.135161 0.880181 2.464039 0.055431 44.924105 2.026694 57.531923 0.028690 0.026090 0.001951
142 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 6.591306 16.087682 0.125320 5.569030 11.958752 4.039685 4.969393 6.621139 0.027956 0.025649 0.002302
143 N14 digital_ok 100.00% 0.00% 0.00% 0.00% 37.648195 44.759856 110.333305 118.660239 101.518567 99.260408 0.570742 -5.213989 0.687294 0.675706 0.430728
144 N14 digital_ok 100.00% 100.00% 100.00% 0.00% 4.777141 1.949631 0.406055 0.325631 1.054712 25.340674 3.100221 4.393297 0.027150 0.025151 0.001349
145 N14 RF_maintenance 100.00% 100.00% 100.00% 0.00% 12.873199 15.038851 5.006531 5.982598 2.882556 9.044397 6.230954 11.919863 0.024325 0.023369 0.000759
147 N15 digital_ok 100.00% 100.00% 100.00% 0.00% 43.853461 37.755863 14.543022 13.187553 6.105422 9.693881 4.535509 0.397163 0.029267 0.027664 0.001302
148 N15 RF_maintenance 100.00% 100.00% 0.00% 0.00% 14.051278 48.209650 3.683286 68.757694 3.918083 400.572118 3.815829 49.599965 0.028146 0.760001 0.261144
149 N15 RF_maintenance 100.00% 100.00% 100.00% 0.00% 57.653948 15.232816 23.964223 5.041713 642.941269 3.173349 42.851942 4.854781 0.027817 0.023860 0.002205
150 N15 RF_maintenance 100.00% 100.00% 100.00% 0.00% 11.891697 13.325199 4.826883 7.679846 4.702741 6.537668 8.807218 10.940745 0.090042 0.091045 0.023591
155 N12 digital_maintenance 100.00% 100.00% 100.00% 0.00% 14.217488 17.680432 2.976062 4.247596 6.040155 8.164554 8.291013 10.381844 0.024676 0.023714 0.000861
156 N12 digital_ok 100.00% 100.00% 100.00% 0.00% 2.716925 2.782091 -0.484211 -0.336586 -1.087643 49.030357 0.859700 2.089224 0.028353 0.026251 0.001514
157 N12 digital_ok 0.00% 100.00% 100.00% 0.00% -0.932453 0.770863 -1.063780 0.982640 0.657245 -0.665694 -0.436377 -1.607467 0.027635 0.025840 0.001582
158 N12 digital_ok 100.00% 100.00% 100.00% 0.00% 14.235214 3.466433 4.385865 0.146907 0.616644 9.410038 2.337859 2.817681 0.024019 0.024211 0.000508
160 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 12.104321 14.167143 4.107819 5.064672 5.297341 7.784313 8.587265 11.890570 0.032465 0.029996 0.003324
161 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 2.889920 17.920277 -0.043538 4.195848 -0.410754 -0.871053 1.765475 2.274508 0.051835 0.031262 0.014153
162 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 2.408462 4.717316 -0.513401 -0.364882 6.636497 4.527427 1.123084 1.350793 0.109847 0.035774 0.028957
163 N14 digital_ok 0.00% 100.00% 100.00% 0.00% -0.021521 0.374743 -0.274934 -0.644139 -0.949728 0.434897 0.606269 1.368514 0.028274 0.026912 0.001283
164 N14 digital_ok 100.00% 100.00% 100.00% 0.00% 2.353645 5.587396 -0.607355 2.789858 3.550667 22.305110 2.173711 3.018231 0.090268 0.104871 0.028489
165 N14 digital_ok 100.00% 100.00% 100.00% 0.00% 8.880665 0.438830 3.434688 0.580424 4.982444 -0.618156 0.288600 1.671523 0.027865 0.024953 0.001793
166 N14 RF_maintenance 0.00% 100.00% 100.00% 0.00% 2.532898 0.021521 0.274080 1.022358 1.152493 -0.398436 -0.803762 -1.386077 0.025085 0.024830 0.000559
167 N15 digital_ok 100.00% 0.00% 0.00% 0.00% 16.629607 13.247788 101.387926 111.600134 243.825115 190.080865 332.339105 222.129269 0.579119 0.593762 0.168532
168 N15 RF_maintenance 100.00% 0.00% 0.00% 0.00% 38.718396 44.220845 109.295873 118.023838 106.302352 105.282291 2.402701 -4.433057 0.755853 0.741586 0.353987
169 N15 digital_ok 100.00% 0.00% 0.00% 0.00% 39.060144 41.488719 115.513172 117.260630 78.927648 111.066121 2.008640 5.533908 0.753996 0.731640 0.363642
170 N15 digital_ok 100.00% 0.00% 0.00% 0.00% 37.137721 41.711651 115.584111 114.087261 92.531169 146.622480 14.392775 15.153086 0.743315 0.742363 0.365296
179 N12 digital_ok 100.00% 100.00% 100.00% 0.00% 2.414631 3.634610 0.193135 2.110196 11.291602 1.224829 2.154852 1.822014 0.028369 0.026057 0.001617
180 N13 RF_maintenance 100.00% 100.00% 100.00% 0.00% 4.276053 14.113450 -0.421291 6.201254 10.264707 3.713612 0.904494 7.969068 0.028291 0.048608 0.003012
181 N13 digital_ok 100.00% 100.00% 100.00% 0.00% 12.561934 24.694923 5.383451 7.947861 4.448146 19.624368 7.612694 9.454406 0.039272 0.028069 0.013943
182 N13 RF_maintenance 100.00% 0.00% 100.00% 0.00% 39.517404 15.215610 108.411565 4.592166 123.396389 8.225369 0.423623 8.847037 0.686093 0.034434 0.346148
183 N13 digital_ok 100.00% 100.00% 100.00% 0.00% -0.273211 -0.154469 -0.768242 -0.126339 -0.893858 9.927047 0.562156 3.899261 0.028234 0.026051 0.001235
184 N14 digital_ok 100.00% 100.00% 100.00% 0.00% -0.077259 1.063557 0.505100 1.391335 5.619375 -1.189353 2.009804 2.019914 0.024719 0.024000 0.000661
185 N14 digital_ok 100.00% 100.00% 100.00% 0.00% 2.775188 1.226846 -0.597349 0.679478 19.737633 -0.730763 1.414063 1.226893 0.028723 0.026089 0.001702
186 N14 digital_ok 0.00% 100.00% 100.00% 0.00% 2.497456 -0.156393 -0.432028 -0.122763 -0.101120 1.517780 1.624864 2.890051 0.028000 0.025253 0.002080
187 N14 digital_ok 0.00% 100.00% 100.00% 0.00% -0.679238 -0.595340 -1.066314 -0.788650 0.007276 -1.101395 1.523813 -0.034322 0.024981 0.024405 0.000693
189 N15 digital_ok 100.00% 100.00% 100.00% 0.00% 1.435284 0.297930 0.412723 -0.746617 13.104742 12.726538 16.856012 1.662290 0.027276 0.025003 0.001684
190 N15 digital_ok 100.00% 100.00% 100.00% 0.00% 11.766325 14.516097 1.670336 6.166017 1.779497 6.898227 1.368433 10.241438 0.025059 0.023611 0.001013
191 N15 digital_ok 100.00% 100.00% 100.00% 0.00% 1.327329 3.541979 0.840485 2.243027 1.170261 5.036173 4.810701 1.476312 0.024352 0.023682 0.000571
200 N18 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
201 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
202 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
203 N18 RF_maintenance 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
219 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
220 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
221 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
222 N18 RF_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
325 N09 dish_ok 100.00% 100.00% 100.00% 0.00% nan nan inf inf nan nan nan nan nan nan nan
329 N12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 6.142884 0.636392 35.896561 36.259895 79.473887 -1.275987 0.244141 0.297078 0.029298 0.028117 0.001143
333 N12 dish_maintenance 100.00% 100.00% 100.00% 0.00% 7.513656 0.906337 35.939920 36.335867 1.814056 0.381349 3.139701 0.020297 0.028630 0.028109 0.000899
In [22]:
# print ex_ants for easy copy-pasting to YAML file
proposed_ex_ants = [ant for i, ant in enumerate(ants) if np.any([col[i] > 0 for col in bar_cols.values()])]
print('ex_ants: [' + ", ".join(str(ant) for ant in proposed_ex_ants) + ']')
print(f'\nunflagged_ants: [{", ".join([str(ant) for ant in ants if ant not in proposed_ex_ants])}]')
# "golden" means no flags and good a priori status
golden_ants = ", ".join([str(ant) for ant in ants if ((ant not in proposed_ex_ants) and (a_priori_statuses[ant] in good_statuses.split(',')))])
print(f'\ngolden_ants: [{golden_ants}]')
ex_ants: [3, 4, 5, 15, 16, 17, 18, 22, 27, 28, 29, 30, 34, 35, 47, 48, 49, 61, 62, 63, 64, 77, 78, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 135, 136, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189, 190, 191, 200, 201, 202, 203, 219, 220, 221, 222, 325, 329, 333]

unflagged_ants: []

golden_ants: []
In [23]:
# write to csv
outpath = os.path.join(nb_outdir, f'rtp_summary_table_{JD}.csv')
print(f'Now saving Table 2 to a csv at {outpath}')
df.to_csv(outpath)
Now saving Table 2 to a csv at /home/obs/src/H6C_Notebooks/_rtp_summary_/rtp_summary_table_2459841.csv
In [24]:
# Load antenna positions
data_list = sorted(glob.glob(os.path.join(data_path, f'zen.{JD}.?????.sum.uvh5')))
hd = io.HERAData(data_list[len(data_list) // 2])

# Figure out where to draw the nodes
node_centers = {}
for node in sorted(set(list(nodes.values()))):
    if np.isfinite(node):
        this_node_ants = [ant for ant in ants + unused_ants if nodes[ant] == node]
        if len(this_node_ants) == 1:
            # put the node label just to the west of the lone antenna 
            node_centers[node] = hd.antpos[ant][node] + np.array([-14.6 / 2, 0, 0])
        else:
            # put the node label between the two antennas closest to the node center
            node_centers[node] = np.mean([hd.antpos[ant] for ant in this_node_ants], axis=0)
            closest_two_pos = sorted([hd.antpos[ant] for ant in this_node_ants], 
                                     key=lambda pos: np.linalg.norm(pos - node_centers[node]))[0:2]
            node_centers[node] = np.mean(closest_two_pos, axis=0)
In [25]:
def Plot_Array(ants, unused_ants, outriggers):
    plt.figure(figsize=(16,16))
    
    plt.scatter(np.array([hd.antpos[ant][0] for ant in hd.data_ants if ant in ants]), 
                np.array([hd.antpos[ant][1] for ant in hd.data_ants if ant in ants]), c='w', s=0)

    # connect every antenna to their node
    for ant in ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', zorder=0)

    rc_color = '#0000ff'
    antm_color = '#ffa500'
    autom_color = '#ff1493'

    # Plot 
    unflagged_ants = []
    for i, ant in enumerate(ants):
        ant_has_flag = False
        # plot large blue annuli for redcal flags
        if use_redcal:
            if redcal_flagged_frac[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=7 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=rc_color, alpha=redcal_flagged_frac[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot medium green annuli for ant_metrics flags
        if use_ant_metrics: 
            if ant_metrics_xants_frac_by_ant[ant] > 0:
                ant_has_flag = True
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=6 * (2 - 1 * float(not outriggers)), fill=True, lw=0,
                                                color=antm_color, alpha=ant_metrics_xants_frac_by_ant[ant]))
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, color='w'))
        
        # plot small red annuli for auto_metrics
        if use_auto_metrics:
            if ant in auto_ex_ants:
                ant_has_flag = True                
                plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=5 * (2 - 1 * float(not outriggers)), fill=True, lw=0, color=autom_color)) 
        
        # plot black/white circles with black outlines for antennas
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4 * (2 - 1 * float(not outriggers)), fill=True, color=['w', 'k'][ant_has_flag], ec='k'))
        if not ant_has_flag:
            unflagged_ants.append(ant)

        # label antennas, using apriori statuses if available
        try:
            bgc = matplotlib.colors.to_rgb(status_colors[a_priori_statuses[ant]])
            c = 'black' if (bgc[0]*0.299 + bgc[1]*0.587 + bgc[2]*0.114) > 186 / 256 else 'white'
        except:
            c = 'k'
            bgc='white'
        plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color=c, backgroundcolor=bgc)

    # label nodes
    for node in sorted(set(list(nodes.values()))):
        if not np.isnan(node) and not np.all(np.isnan(node_centers[node])):
            plt.text(node_centers[node][0], node_centers[node][1], str(node), va='center', ha='center', bbox={'color': 'w', 'ec': 'k'})
    
    # build legend 
    legend_objs = []
    legend_labels = []
    
    # use circles for annuli 
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgecolor='k', markerfacecolor='w', markersize=13))
    legend_labels.append(f'{len(unflagged_ants)} / {len(ants)} Total {["Core", "Outrigger"][outriggers]} Antennas Never Flagged')
    legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='k', markersize=15))
    legend_labels.append(f'{len(ants) - len(unflagged_ants)} Antennas {["Core", "Outrigger"][outriggers]} Flagged for Any Reason')

    if use_auto_metrics:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=autom_color, markersize=15))
        legend_labels.append(f'{len([ant for ant in auto_ex_ants if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas Flagged by Auto Metrics')
    if use_ant_metrics: 
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=antm_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum([frac for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants]), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in ant_metrics_xants_frac_by_ant.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Ant Metrics\n(alpha indicates fraction of time)')        
    if use_redcal:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markeredgewidth=2, markeredgecolor=rc_color, markersize=15))
        legend_labels.append(f'{np.round(np.sum(list(redcal_flagged_frac.values())), 2)} Antenna-Nights on' 
                             f'\n{np.sum([frac > 0 for ant, frac in redcal_flagged_frac.items() if ant in ants])} {["Core", "Outrigger"][outriggers]} Antennas '
                             'Flagged by Redcal\n(alpha indicates fraction of time)')

    # use rectangular patches for a priori statuses that appear in the array
    for aps in sorted(list(set(list(a_priori_statuses.values())))):
        if aps != 'Not Found':
            legend_objs.append(plt.Circle((0, 0), radius=7, fill=True, color=status_colors[aps]))
            legend_labels.append(f'A Priori Status:\n{aps} ({[status for ant, status in a_priori_statuses.items() if ant in ants].count(aps)} {["Core", "Outrigger"][outriggers]} Antennas)')

    # label nodes as a white box with black outline
    if len(node_centers) > 0:
        legend_objs.append(matplotlib.patches.Patch(facecolor='w', edgecolor='k'))
        legend_labels.append('Node Number')

    if len(unused_ants) > 0:
        legend_objs.append(matplotlib.lines.Line2D([0], [0], marker='o', color='w', markerfacecolor='grey', markersize=15, alpha=.2))
        legend_labels.append(f'Anntenna Not In Data')
        
    
    plt.legend(legend_objs, legend_labels, ncol=2, fontsize='large', framealpha=1)
    
    if outriggers:
        pass
    else:
        plt.xlim([-200, 150])
        plt.ylim([-150, 150])        
       
    # set axis equal and label everything
    plt.axis('equal')
    plt.tight_layout()
    plt.title(f'Summary of {["Core", "Outrigger"][outriggers]} Antenna Statuses and Metrics on {JD}', size=20)    
    plt.xlabel("Antenna East-West Position (meters)", size=12)
    plt.ylabel("Antenna North-South Position (meters)", size=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    xlim = plt.gca().get_xlim()
    ylim = plt.gca().get_ylim()    
        
    # plot unused antennas
    plt.autoscale(False)    
    for ant in unused_ants:
        if nodes[ant] in node_centers:
            plt.plot([hd.antpos[ant][0], node_centers[nodes[ant]][0]], 
                     [hd.antpos[ant][1], node_centers[nodes[ant]][1]], 'k', alpha=.2, zorder=0)
        
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='w', ec=None, alpha=1, zorder=0))
        plt.gca().add_artist(plt.Circle(tuple(hd.antpos[ant][0:2]), radius=4, fill=True, color='grey', ec=None, alpha=.2, zorder=0))
        if hd.antpos[ant][0] < xlim[1] and hd.antpos[ant][0] > xlim[0]:
            if hd.antpos[ant][1] < ylim[1] and hd.antpos[ant][1] > ylim[0]:
                plt.text(hd.antpos[ant][0], hd.antpos[ant][1], str(ant), va='center', ha='center', color='k', alpha=.2) 

Figure 1: Array Plot of Flags and A Priori Statuses¶

This plot shows all antennas, which nodes they are connected to, and their a priori statuses (as the highlight text of their antenna numbers). It may also show (depending on what is finished running):

  • Whether they were flagged by auto_metrics (red circle) for bandpass shape, overall power, temporal variability, or temporal discontinuities. This is done in a binary fashion for the whole night.
  • Whether they were flagged by ant_metrics (green circle) as either dead (on either polarization) or crossed, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.
  • Whether they were flagged by redcal (blue circle) for high chi^2, with the transparency indicating the fraction of the night (i.e. number of files) that were flagged.

Note that the last fraction does not include antennas that were flagged before going into redcal due to their a priori status, for example.

In [26]:
core_ants = [ant for ant in ants if ant < 320]
outrigger_ants = [ant for ant in ants if ant >= 320]
Plot_Array(ants=core_ants, unused_ants=unused_ants, outriggers=False)
if len(outrigger_ants) > 0:
    Plot_Array(ants=outrigger_ants, unused_ants=sorted(set(unused_ants + core_ants)), outriggers=True)

Metadata¶

In [27]:
from hera_qm import __version__
print(__version__)
from hera_cal import __version__
print(__version__)
2.0.4.dev7+g7e32def
3.1.5.dev72+g3641fe9
In [ ]: