Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "153" csv_folder = "/home/obs/src/H6C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H6C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 101 csvs in /home/obs/src/H6C_Notebooks/_rtp_summary_ Found 99 auto_metrics notebooks in /home/obs/src/H6C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459918 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 12.142518 | -0.232528 | 3.570483 | -0.463800 | 6.947695 | 2.536927 | 2.336921 | 0.435422 | 0.0420 | 0.6432 | 0.5741 | nan | nan |
2459917 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 10.294691 | -0.397787 | 3.463952 | -0.584393 | 4.913369 | 4.441557 | 1.070691 | 1.713259 | 0.0398 | 0.6799 | 0.6141 | nan | nan |
2459916 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 10.608829 | -0.242604 | 3.782041 | -0.969444 | 7.352766 | 2.347918 | 1.514427 | 0.814894 | 0.0443 | 0.6443 | 0.5709 | nan | nan |
2459915 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 11.194179 | -0.190830 | 4.338070 | -0.329301 | 7.888672 | 2.193116 | 3.666015 | 0.792884 | 0.0537 | 0.6802 | 0.5994 | nan | nan |
2459914 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 12.154908 | 0.011251 | 4.437444 | -0.164030 | 8.632898 | 0.693477 | 6.716129 | -1.821929 | 0.0469 | 0.7115 | 0.6367 | nan | nan |
2459913 | digital_ok | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 12.129248 | 0.410456 | 3.616979 | -0.297558 | 9.016192 | -0.679984 | 6.138996 | 0.218445 | 0.0420 | 0.6416 | 0.5757 | nan | nan |
2459876 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 17.801173 | 1.889611 | 20.859973 | 10.524255 | 29.911546 | 4.810006 | 4.899581 | -0.540640 | 0.0419 | 0.6389 | 0.4879 | nan | nan |
2459875 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 18.717339 | 1.106641 | 26.794518 | 17.482780 | 13.407344 | 2.673220 | 2.971246 | -0.339854 | 0.0420 | 0.6785 | 0.5306 | nan | nan |
2459874 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 26.469783 | 2.787466 | 13.742515 | 7.430590 | 18.291488 | 4.024300 | 3.471244 | -0.678045 | 0.0404 | 0.6337 | 0.4959 | nan | nan |
2459873 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 19.978451 | 1.758426 | 17.317623 | 12.227928 | 7.332744 | 2.721978 | 1.209883 | -0.632179 | 0.0431 | 0.6347 | 0.5337 | nan | nan |
2459872 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 17.356714 | 1.436190 | 21.762538 | 16.113526 | 20.261589 | 1.899324 | 2.026988 | -0.868229 | 0.0376 | 0.6383 | 0.4774 | nan | nan |
2459871 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | - | - | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459870 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | - | - | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459869 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 19.792580 | 1.283045 | 19.349459 | 8.647361 | 15.928893 | 2.600220 | 5.480769 | -0.563627 | 0.0418 | 0.6620 | 0.5618 | nan | nan |
2459868 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 21.453192 | 2.295431 | 28.100379 | 17.531905 | 10.903811 | 1.528027 | 3.282867 | -1.370814 | 0.0404 | 0.6349 | 0.5367 | nan | nan |
2459867 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 14.932275 | 1.443225 | 21.727601 | 13.784221 | 5.877768 | 4.075967 | 2.188993 | -0.924364 | 0.0424 | 0.6397 | 0.5448 | nan | nan |
2459866 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 17.229298 | 1.753270 | 20.899895 | 11.968171 | 6.546196 | 7.018119 | 0.495489 | -1.125720 | 0.0438 | 0.6419 | 0.5336 | nan | nan |
2459865 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 19.232138 | 3.252789 | 23.400697 | 18.462638 | 15.838345 | 0.104739 | 14.693831 | 1.230902 | 0.0380 | 0.6654 | 0.5181 | nan | nan |
2459864 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 23.145828 | 2.115591 | 7.460182 | 9.240925 | 8.334332 | 1.966554 | 3.355784 | 5.545355 | 0.0389 | 0.6385 | 0.5435 | nan | nan |
2459863 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 13.943485 | 0.538399 | 2.413150 | -0.866269 | 3.074362 | 3.630048 | 1.432954 | -0.818810 | 0.0393 | 0.6266 | 0.5389 | nan | nan |
2459862 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 13.746814 | 0.967150 | 8.022866 | 11.065514 | 12.513256 | 5.880500 | 1.074642 | -0.656708 | 0.0426 | 0.6574 | 0.5237 | nan | nan |
2459861 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 10.580536 | -0.137492 | 2.656283 | -2.345612 | 2.603734 | 3.528112 | 1.081415 | -0.532508 | 0.0387 | 0.6374 | 0.5069 | nan | nan |
2459860 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 11.549778 | 0.121104 | 7.752079 | 6.983817 | 14.837369 | -0.250575 | 1.320329 | -0.520589 | 0.0389 | 0.6382 | 0.5516 | nan | nan |
2459859 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | - | - | 9.649743 | -0.263575 | 3.101027 | -2.495937 | 2.305493 | 2.695088 | 0.364357 | -0.731555 | 0.0411 | 0.6450 | 0.5521 | nan | nan |
2459858 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 10.475126 | -0.402157 | 3.117516 | -2.937149 | 2.368111 | 9.310174 | 1.041268 | -0.473250 | 0.0402 | 0.6498 | 0.5531 | 1.205379 | 2.354466 |
2459857 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | - | - | 6.143501 | 0.676900 | 0.697027 | 0.955769 | 0.315613 | 7.279253 | 2.721645 | -1.801030 | 0.0302 | 0.0291 | 0.0018 | nan | nan |
2459856 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 15.610285 | 0.496174 | 7.607398 | 5.752468 | 6.777402 | 9.874079 | 1.779605 | -0.987555 | 0.0424 | 0.6633 | 0.5747 | 1.233204 | 2.396796 |
2459855 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 16.355420 | 0.786453 | 7.057124 | 7.551839 | 2.662368 | 8.992588 | 0.477344 | -0.820623 | 0.0414 | 0.6768 | 0.5776 | 1.191799 | 2.232598 |
2459854 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 16.351673 | 0.853728 | 5.023875 | 6.089389 | 3.706482 | 6.900374 | 1.511581 | -0.772071 | 0.0419 | 0.7014 | 0.5991 | 1.194799 | 2.311566 |
2459853 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 13.682671 | 0.303434 | 7.669268 | 8.574990 | 7.170864 | 9.015494 | 2.082718 | -0.515099 | 0.0429 | 0.6540 | 0.5553 | 1.207114 | 2.523630 |
2459852 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 13.327521 | 1.497490 | 8.353513 | 10.042711 | 15.744328 | 3.541920 | 16.682260 | 7.187241 | 0.0424 | 0.8060 | 0.6892 | 1.193351 | 4.419798 |
2459851 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459850 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 12.983697 | 1.386091 | 6.717505 | 7.207484 | 10.383200 | 9.585652 | 5.548127 | 2.232256 | 0.0475 | 0.7232 | 0.5902 | 1.152546 | 2.248777 |
2459849 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 15.077840 | 1.078566 | 14.861041 | 13.346355 | 7.170837 | 7.887010 | 2.567409 | -0.170595 | 0.0449 | 0.7134 | 0.5889 | 1.214892 | 2.771814 |
2459848 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 14.073788 | 1.110185 | 7.509394 | 11.514874 | 14.349069 | 6.098934 | 1.002256 | -0.762662 | 0.0446 | 0.7167 | 0.6023 | 1.167801 | 2.508015 |
2459847 | not_connected | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 0.00% | 16.217300 | 1.069951 | 6.749833 | 12.039903 | 21.727753 | 2.934335 | -0.041189 | -0.966612 | 0.0401 | 0.6500 | 0.5471 | 1.254217 | 2.722858 |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 12.142518 | -0.232528 | 12.142518 | -0.463800 | 3.570483 | 2.536927 | 6.947695 | 0.435422 | 2.336921 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 10.294691 | -0.397787 | 10.294691 | -0.584393 | 3.463952 | 4.441557 | 4.913369 | 1.713259 | 1.070691 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 10.608829 | 10.608829 | -0.242604 | 3.782041 | -0.969444 | 7.352766 | 2.347918 | 1.514427 | 0.814894 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 11.194179 | 11.194179 | -0.190830 | 4.338070 | -0.329301 | 7.888672 | 2.193116 | 3.666015 | 0.792884 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 12.154908 | 12.154908 | 0.011251 | 4.437444 | -0.164030 | 8.632898 | 0.693477 | 6.716129 | -1.821929 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | digital_ok | ee Shape | 12.129248 | 0.410456 | 12.129248 | -0.297558 | 3.616979 | -0.679984 | 9.016192 | 0.218445 | 6.138996 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Temporal Variability | 29.911546 | 17.801173 | 1.889611 | 20.859973 | 10.524255 | 29.911546 | 4.810006 | 4.899581 | -0.540640 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 26.794518 | 18.717339 | 1.106641 | 26.794518 | 17.482780 | 13.407344 | 2.673220 | 2.971246 | -0.339854 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 26.469783 | 26.469783 | 2.787466 | 13.742515 | 7.430590 | 18.291488 | 4.024300 | 3.471244 | -0.678045 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 19.978451 | 19.978451 | 1.758426 | 17.317623 | 12.227928 | 7.332744 | 2.721978 | 1.209883 | -0.632179 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 21.762538 | 1.436190 | 17.356714 | 16.113526 | 21.762538 | 1.899324 | 20.261589 | -0.868229 | 2.026988 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 19.792580 | 19.792580 | 1.283045 | 19.349459 | 8.647361 | 15.928893 | 2.600220 | 5.480769 | -0.563627 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 28.100379 | 21.453192 | 2.295431 | 28.100379 | 17.531905 | 10.903811 | 1.528027 | 3.282867 | -1.370814 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 21.727601 | 14.932275 | 1.443225 | 21.727601 | 13.784221 | 5.877768 | 4.075967 | 2.188993 | -0.924364 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 20.899895 | 1.753270 | 17.229298 | 11.968171 | 20.899895 | 7.018119 | 6.546196 | -1.125720 | 0.495489 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Power | 23.400697 | 19.232138 | 3.252789 | 23.400697 | 18.462638 | 15.838345 | 0.104739 | 14.693831 | 1.230902 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 23.145828 | 2.115591 | 23.145828 | 9.240925 | 7.460182 | 1.966554 | 8.334332 | 5.545355 | 3.355784 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 13.943485 | 13.943485 | 0.538399 | 2.413150 | -0.866269 | 3.074362 | 3.630048 | 1.432954 | -0.818810 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 13.746814 | 13.746814 | 0.967150 | 8.022866 | 11.065514 | 12.513256 | 5.880500 | 1.074642 | -0.656708 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 10.580536 | -0.137492 | 10.580536 | -2.345612 | 2.656283 | 3.528112 | 2.603734 | -0.532508 | 1.081415 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Temporal Variability | 14.837369 | 11.549778 | 0.121104 | 7.752079 | 6.983817 | 14.837369 | -0.250575 | 1.320329 | -0.520589 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 9.649743 | 9.649743 | -0.263575 | 3.101027 | -2.495937 | 2.305493 | 2.695088 | 0.364357 | -0.731555 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 10.475126 | -0.402157 | 10.475126 | -2.937149 | 3.117516 | 9.310174 | 2.368111 | -0.473250 | 1.041268 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | nn Temporal Variability | 7.279253 | 0.676900 | 6.143501 | 0.955769 | 0.697027 | 7.279253 | 0.315613 | -1.801030 | 2.721645 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 15.610285 | 15.610285 | 0.496174 | 7.607398 | 5.752468 | 6.777402 | 9.874079 | 1.779605 | -0.987555 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 16.355420 | 0.786453 | 16.355420 | 7.551839 | 7.057124 | 8.992588 | 2.662368 | -0.820623 | 0.477344 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 16.351673 | 0.853728 | 16.351673 | 6.089389 | 5.023875 | 6.900374 | 3.706482 | -0.772071 | 1.511581 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 13.682671 | 0.303434 | 13.682671 | 8.574990 | 7.669268 | 9.015494 | 7.170864 | -0.515099 | 2.082718 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Temporal Discontinuties | 16.682260 | 13.327521 | 1.497490 | 8.353513 | 10.042711 | 15.744328 | 3.541920 | 16.682260 | 7.187241 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 12.983697 | 12.983697 | 1.386091 | 6.717505 | 7.207484 | 10.383200 | 9.585652 | 5.548127 | 2.232256 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Shape | 15.077840 | 15.077840 | 1.078566 | 14.861041 | 13.346355 | 7.170837 | 7.887010 | 2.567409 | -0.170595 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Temporal Variability | 14.349069 | 1.110185 | 14.073788 | 11.514874 | 7.509394 | 6.098934 | 14.349069 | -0.762662 | 1.002256 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
153 | N16 | not_connected | ee Temporal Variability | 21.727753 | 1.069951 | 16.217300 | 12.039903 | 6.749833 | 2.934335 | 21.727753 | -0.966612 | -0.041189 |