Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "154" csv_folder = "/home/obs/src/H6C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H6C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 101 csvs in /home/obs/src/H6C_Notebooks/_rtp_summary_ Found 99 auto_metrics notebooks in /home/obs/src/H6C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459918 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -0.581369 | -0.957364 | 0.591914 | 0.073247 | -1.012472 | -1.489915 | -1.235423 | -0.684208 | 0.6037 | 0.6376 | 0.4226 | nan | nan |
2459917 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -1.203141 | -1.336621 | 0.285300 | -0.185545 | -0.933207 | -1.941173 | -0.372870 | -0.735140 | 0.6399 | 0.6750 | 0.4888 | nan | nan |
2459916 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -0.606435 | -0.924952 | 0.300407 | -0.165378 | -1.012334 | -1.532871 | -1.708249 | -0.869781 | 0.6041 | 0.6413 | 0.4274 | nan | nan |
2459915 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -0.979294 | -1.106917 | 0.499537 | 0.130926 | -0.664208 | -1.199473 | -0.893862 | -0.293271 | 0.6453 | 0.6746 | 0.3819 | nan | nan |
2459914 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -1.292986 | -1.094343 | 0.642902 | 0.283973 | -0.912402 | -1.130287 | -1.342554 | -1.449378 | 0.6734 | 0.7080 | 0.3300 | nan | nan |
2459913 | digital_ok | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -0.848807 | -0.593175 | 0.497220 | 0.023380 | -0.434329 | -1.024541 | -0.905019 | -0.511767 | 0.6075 | 0.6335 | 0.4279 | nan | nan |
2459876 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.226716 | 0.556956 | 18.943360 | 17.849078 | 5.706545 | 7.893974 | -1.457504 | -0.299933 | 0.6336 | 0.6378 | 0.4189 | nan | nan |
2459875 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.637733 | -0.300965 | 25.576205 | 24.902117 | 2.783859 | 2.866305 | -0.970802 | 0.049111 | 0.6527 | 0.6768 | 0.4305 | nan | nan |
2459874 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.332651 | 0.319439 | 13.171296 | 12.480016 | 4.285347 | 3.936018 | -1.084490 | -0.841281 | 0.6344 | 0.6339 | 0.4129 | nan | nan |
2459873 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.658103 | -0.256412 | 17.370661 | 16.942166 | 1.228677 | 1.156629 | -0.786089 | -0.766064 | 0.6357 | 0.6316 | 0.4131 | nan | nan |
2459872 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.727670 | -0.037126 | 23.409786 | 22.905701 | 2.700899 | 4.590182 | 0.072730 | -0.964171 | 0.6333 | 0.6350 | 0.4211 | nan | nan |
2459871 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | - | - | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459870 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | - | - | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | nan | nan |
2459869 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 0.346852 | 0.780062 | 17.457968 | 16.666499 | 4.144727 | 3.741881 | 0.164490 | 0.234113 | 0.6537 | 0.6602 | 0.4171 | nan | nan |
2459868 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.414787 | 0.430772 | 26.914131 | 26.504147 | 1.187925 | 2.297351 | -1.070529 | -1.236617 | 0.6324 | 0.6333 | 0.4338 | nan | nan |
2459867 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.421571 | -0.011057 | 21.611013 | 20.965866 | 1.700804 | 1.100814 | -0.718541 | -1.183668 | 0.6455 | 0.6394 | 0.4336 | nan | nan |
2459866 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.344788 | 0.172237 | 20.098008 | 19.130532 | 2.433638 | 0.912481 | -0.910086 | -1.391924 | 0.6494 | 0.6421 | 0.4257 | nan | nan |
2459865 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.078073 | 0.517514 | 25.700871 | 25.318691 | 3.644571 | 3.258961 | 4.082005 | 1.945105 | 0.6692 | 0.6606 | 0.3999 | nan | nan |
2459864 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -1.222604 | -0.221496 | 13.340515 | 12.500962 | 2.691398 | 2.236951 | 0.212992 | -0.895957 | 0.6470 | 0.6356 | 0.4459 | nan | nan |
2459863 | not_connected | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -1.194237 | -1.174558 | 0.600323 | 0.185512 | 0.129036 | -1.624289 | -0.885777 | -1.581533 | 0.6402 | 0.6241 | 0.4359 | nan | nan |
2459862 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.826414 | -0.682595 | 16.610916 | 15.050276 | 1.596702 | 1.949067 | -0.879568 | -0.888200 | 0.6189 | 0.6581 | 0.4479 | nan | nan |
2459861 | not_connected | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -1.186071 | -1.274167 | -0.434488 | -1.076228 | -1.159110 | -1.801376 | -1.011764 | -1.400449 | 0.6574 | 0.6383 | 0.4486 | nan | nan |
2459860 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | - | - | -0.273048 | -0.205483 | 12.944867 | 11.764391 | 4.047809 | 3.292940 | -1.046181 | -1.181880 | 0.6637 | 0.6401 | 0.4473 | nan | nan |
2459859 | not_connected | 0.00% | 0.00% | 0.00% | 0.00% | - | - | -0.960650 | -1.207858 | -0.265894 | -1.008808 | -0.975065 | -1.510210 | -1.297218 | -1.140718 | 0.6712 | 0.6458 | 0.4423 | nan | nan |
2459858 | not_connected | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -1.153940 | -1.228457 | -0.774832 | -1.420858 | -0.699684 | -1.672101 | -1.557198 | -1.510296 | 0.6811 | 0.6528 | 0.4556 | 2.614290 | 2.558429 |
2459857 | not_connected | 0.00% | 100.00% | 100.00% | 0.00% | - | - | 0.891608 | 0.680367 | 2.437140 | 2.078656 | -0.186181 | -0.862805 | -1.577421 | -0.640705 | 0.0302 | 0.0293 | 0.0008 | nan | nan |
2459856 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 0.392525 | 0.335415 | 12.178367 | 10.967909 | 1.095693 | 1.346901 | -1.866551 | -1.571701 | 0.6711 | 0.6689 | 0.4412 | 2.430961 | 2.418392 |
2459855 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.032122 | -0.163611 | 13.489433 | 12.363130 | 0.083537 | -0.428348 | -1.180220 | -1.249497 | 0.6367 | 0.6808 | 0.4765 | 2.325623 | 2.384815 |
2459854 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.217194 | -0.502452 | 11.570197 | 10.653920 | -0.124197 | -0.776901 | -1.395561 | -1.207548 | 0.6669 | 0.7082 | 0.4731 | 2.449061 | 2.485727 |
2459853 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.151591 | -0.122604 | 15.018212 | 13.658491 | 1.937662 | 1.159429 | -1.429812 | -1.228228 | 0.6979 | 0.6575 | 0.4630 | 2.914872 | 2.738614 |
2459852 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 0.554414 | 0.743306 | 14.534553 | 13.302575 | 6.671012 | 6.062674 | 8.969036 | 8.542561 | 0.7851 | 0.8022 | 0.2871 | 4.254848 | 4.757037 |
2459851 | not_connected | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459850 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.044114 | 1.088907 | 14.180354 | 12.731014 | 2.188209 | 5.500962 | 0.007435 | 5.401714 | 0.6962 | 0.7278 | 0.3883 | 2.435664 | 2.514329 |
2459849 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 0.818398 | 0.751215 | 28.990613 | 26.145939 | 1.439490 | 1.062652 | -1.478852 | -0.885607 | 0.6972 | 0.7209 | 0.3950 | 3.170543 | 3.218449 |
2459848 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 0.278349 | 0.509555 | 20.605677 | 18.524138 | 2.830219 | 3.166863 | -1.352534 | -0.700580 | 0.6704 | 0.7213 | 0.4171 | 2.542850 | 2.662705 |
2459847 | not_connected | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.201366 | 0.254030 | 19.397008 | 17.518444 | 3.198482 | 4.358538 | -1.244072 | -1.259048 | 0.6824 | 0.6526 | 0.4667 | 5.550271 | 5.163706 |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.591914 | -0.957364 | -0.581369 | 0.073247 | 0.591914 | -1.489915 | -1.012472 | -0.684208 | -1.235423 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.285300 | -1.336621 | -1.203141 | -0.185545 | 0.285300 | -1.941173 | -0.933207 | -0.735140 | -0.372870 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.300407 | -0.606435 | -0.924952 | 0.300407 | -0.165378 | -1.012334 | -1.532871 | -1.708249 | -0.869781 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.499537 | -0.979294 | -1.106917 | 0.499537 | 0.130926 | -0.664208 | -1.199473 | -0.893862 | -0.293271 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.642902 | -1.292986 | -1.094343 | 0.642902 | 0.283973 | -0.912402 | -1.130287 | -1.342554 | -1.449378 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | digital_ok | ee Power | 0.497220 | -0.593175 | -0.848807 | 0.023380 | 0.497220 | -1.024541 | -0.434329 | -0.511767 | -0.905019 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 18.943360 | -0.226716 | 0.556956 | 18.943360 | 17.849078 | 5.706545 | 7.893974 | -1.457504 | -0.299933 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 25.576205 | -0.637733 | -0.300965 | 25.576205 | 24.902117 | 2.783859 | 2.866305 | -0.970802 | 0.049111 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 13.171296 | -0.332651 | 0.319439 | 13.171296 | 12.480016 | 4.285347 | 3.936018 | -1.084490 | -0.841281 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 17.370661 | -0.658103 | -0.256412 | 17.370661 | 16.942166 | 1.228677 | 1.156629 | -0.786089 | -0.766064 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 23.409786 | -0.037126 | -0.727670 | 22.905701 | 23.409786 | 4.590182 | 2.700899 | -0.964171 | 0.072730 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 17.457968 | 0.346852 | 0.780062 | 17.457968 | 16.666499 | 4.144727 | 3.741881 | 0.164490 | 0.234113 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 26.914131 | -0.414787 | 0.430772 | 26.914131 | 26.504147 | 1.187925 | 2.297351 | -1.070529 | -1.236617 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 21.611013 | -0.421571 | -0.011057 | 21.611013 | 20.965866 | 1.700804 | 1.100814 | -0.718541 | -1.183668 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 20.098008 | 0.172237 | -0.344788 | 19.130532 | 20.098008 | 0.912481 | 2.433638 | -1.391924 | -0.910086 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 25.700871 | -0.078073 | 0.517514 | 25.700871 | 25.318691 | 3.644571 | 3.258961 | 4.082005 | 1.945105 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 13.340515 | -0.221496 | -1.222604 | 12.500962 | 13.340515 | 2.236951 | 2.691398 | -0.895957 | 0.212992 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 0.600323 | -1.194237 | -1.174558 | 0.600323 | 0.185512 | 0.129036 | -1.624289 | -0.885777 | -1.581533 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 16.610916 | -0.826414 | -0.682595 | 16.610916 | 15.050276 | 1.596702 | 1.949067 | -0.879568 | -0.888200 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | -0.434488 | -1.274167 | -1.186071 | -1.076228 | -0.434488 | -1.801376 | -1.159110 | -1.400449 | -1.011764 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 12.944867 | -0.273048 | -0.205483 | 12.944867 | 11.764391 | 4.047809 | 3.292940 | -1.046181 | -1.181880 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | -0.265894 | -0.960650 | -1.207858 | -0.265894 | -1.008808 | -0.975065 | -1.510210 | -1.297218 | -1.140718 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Temporal Variability | -0.699684 | -1.228457 | -1.153940 | -1.420858 | -0.774832 | -1.672101 | -0.699684 | -1.510296 | -1.557198 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 2.437140 | 0.680367 | 0.891608 | 2.078656 | 2.437140 | -0.862805 | -0.186181 | -0.640705 | -1.577421 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 12.178367 | 0.392525 | 0.335415 | 12.178367 | 10.967909 | 1.095693 | 1.346901 | -1.866551 | -1.571701 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 13.489433 | -0.163611 | -0.032122 | 12.363130 | 13.489433 | -0.428348 | 0.083537 | -1.249497 | -1.180220 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 11.570197 | -0.502452 | -0.217194 | 10.653920 | 11.570197 | -0.776901 | -0.124197 | -1.207548 | -1.395561 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 15.018212 | -0.122604 | -0.151591 | 13.658491 | 15.018212 | 1.159429 | 1.937662 | -1.228228 | -1.429812 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 14.534553 | 0.554414 | 0.743306 | 14.534553 | 13.302575 | 6.671012 | 6.062674 | 8.969036 | 8.542561 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 14.180354 | -0.044114 | 1.088907 | 14.180354 | 12.731014 | 2.188209 | 5.500962 | 0.007435 | 5.401714 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 28.990613 | 0.818398 | 0.751215 | 28.990613 | 26.145939 | 1.439490 | 1.062652 | -1.478852 | -0.885607 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 20.605677 | 0.509555 | 0.278349 | 18.524138 | 20.605677 | 3.166863 | 2.830219 | -0.700580 | -1.352534 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
154 | N16 | not_connected | ee Power | 19.397008 | 0.254030 | -0.201366 | 17.518444 | 19.397008 | 4.358538 | 3.198482 | -1.259048 | -1.244072 |