Antenna Season Report Notebook¶

Josh Dillon, Last Revised January 2022

This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summarynotebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics notebook pertinent to the specific antenna.

In [1]:
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
In [3]:
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "174"
csv_folder = "/home/obs/src/H6C_Notebooks/_rtp_summary_"
auto_metrics_folder = "/home/obs/src/H6C_Notebooks/auto_metrics_inspect"
In [4]:
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))

Antenna 174 Report

In [5]:
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
In [6]:
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 101 csvs in /home/obs/src/H6C_Notebooks/_rtp_summary_
Found 99 auto_metrics notebooks in /home/obs/src/H6C_Notebooks/auto_metrics_inspect
In [7]:
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0

def jd_to_summary_url(jd):
    return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'

def jd_to_auto_metrics_url(jd):
    return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'

Load relevant info from summary CSVs¶

In [8]:
this_antenna = None
jds = []

# parse information about antennas and nodes
for csv in csvs:
    df = pd.read_csv(csv)
    for n in range(len(df)):
        # Add this day to the antenna
        row = df.loc[n]
        if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
            antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
        else:
            antnum = int(row['Ant'])
        if antnum != int(antenna):
            continue
        
        if np.issubdtype(type(row['Node']), np.integer):
            row['Node'] = str(row['Node'])
        if type(row['Node']) == str and row['Node'].isnumeric():
            row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
            
        if this_antenna is None:
            this_antenna = Antenna(row['Ant'], row['Node'])
        jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
        jds.append(jd)
        this_antenna.add_day(jd, row)
        break
In [9]:
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]

df = pd.DataFrame(to_show)

# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
    df[col] = bar_cols[col]

z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
    df[col] = z_score_cols[col]

ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
    df[col] = ant_metrics_cols[col]

redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]   
for col in redcal_cols:
    df[col] = redcal_cols[col]

# style dataframe
table = df.style.hide_index()\
          .applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
          .background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
          .background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
          .applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
          .applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
          .applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
          .bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
          .format({col: '{:,.4f}'.format for col in z_score_cols}) \
          .format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
          .format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
          .set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])]) 

Table 1: Per-Night RTP Summary Info For This Atenna¶

This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.

In [10]:
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))

Antenna 174, Node N16:

Out[10]:
JDs A Priori Status Auto Metrics Flags Dead Fraction in Ant Metrics (Jee) Dead Fraction in Ant Metrics (Jnn) Crossed Fraction in Ant Metrics Flag Fraction Before Redcal Flagged By Redcal chi^2 Fraction ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score Average Dead Ant Metric (Jee) Average Dead Ant Metric (Jnn) Average Crossed Ant Metric Median chi^2 Per Antenna (Jee) Median chi^2 Per Antenna (Jnn)
2459918 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - 295.035114 294.991183 inf inf 4139.224816 4139.321893 11300.843568 11303.265273 nan nan nan nan nan
2459917 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - nan nan inf inf nan nan nan nan nan nan nan nan nan
2459916 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - nan nan inf inf nan nan nan nan nan nan nan nan nan
2459915 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - 275.065532 275.044266 inf inf 3694.291154 3694.245537 8431.807133 8432.667650 nan nan nan nan nan
2459914 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - nan nan inf inf nan nan nan nan nan nan nan nan nan
2459913 digital_maintenance 100.00% 100.00% 100.00% 0.00% - - nan nan inf inf nan nan nan nan nan nan nan nan nan

Load antenna metric spectra and waterfalls from auto_metrics notebooks.¶

In [11]:
htmls_to_display = []
for am_html in auto_metric_htmls:
    html_to_display = ''
    # read html into a list of lines
    with open(am_html) as f:
        lines = f.readlines()
    
    # find section with this antenna's metric plots and add to html_to_display
    jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
    try:
        section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
    except ValueError:
        continue
    html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
    for line in lines[section_start_line + 1:]:
        html_to_display += line
        if '<hr' in line:
            htmls_to_display.append(html_to_display)
            break

Figure 1: Antenna autocorrelation metric spectra and waterfalls.¶

These figures are reproduced from auto_metrics notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.

In [12]:
for i, html_to_display in enumerate(htmls_to_display):
    if i == 100:
        break
    display(HTML(html_to_display))

Antenna 174: 2459918

Ant Node A Priori Status Worst Metric Worst Modified Z-Score nn Shape Modified Z-Score ee Shape Modified Z-Score nn Power Modified Z-Score ee Power Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Discontinuties Modified Z-Score ee Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance nn Power inf 294.991183 295.035114 inf inf 4139.321893 4139.224816 11303.265273 11300.843568

Antenna 174: 2459917

Ant Node A Priori Status Worst Metric Worst Modified Z-Score nn Shape Modified Z-Score ee Shape Modified Z-Score nn Power Modified Z-Score ee Power Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Discontinuties Modified Z-Score ee Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance nn Shape nan nan nan inf inf nan nan nan nan

Antenna 174: 2459916

Ant Node A Priori Status Worst Metric Worst Modified Z-Score ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance ee Shape nan nan nan inf inf nan nan nan nan

Antenna 174: 2459915

Ant Node A Priori Status Worst Metric Worst Modified Z-Score ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance ee Power inf 275.065532 275.044266 inf inf 3694.291154 3694.245537 8431.807133 8432.667650

Antenna 174: 2459914

Ant Node A Priori Status Worst Metric Worst Modified Z-Score ee Shape Modified Z-Score nn Shape Modified Z-Score ee Power Modified Z-Score nn Power Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Discontinuties Modified Z-Score nn Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance ee Shape nan nan nan inf inf nan nan nan nan

Antenna 174: 2459913

Ant Node A Priori Status Worst Metric Worst Modified Z-Score nn Shape Modified Z-Score ee Shape Modified Z-Score nn Power Modified Z-Score ee Power Modified Z-Score nn Temporal Variability Modified Z-Score ee Temporal Variability Modified Z-Score nn Temporal Discontinuties Modified Z-Score ee Temporal Discontinuties Modified Z-Score
174 N16 digital_maintenance nn Shape nan nan nan inf inf nan nan nan nan

In [ ]: