Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "322" csv_folder = "/home/obs/src/H6C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H6C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 62 csvs in /home/obs/src/H6C_Notebooks/_rtp_summary_ Found 60 auto_metrics notebooks in /home/obs/src/H6C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
JDs | A Priori Status | Auto Metrics Flags | Dead Fraction in Ant Metrics (Jee) | Dead Fraction in Ant Metrics (Jnn) | Crossed Fraction in Ant Metrics | Flag Fraction Before Redcal | Flagged By Redcal chi^2 Fraction | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | Average Dead Ant Metric (Jee) | Average Dead Ant Metric (Jnn) | Average Crossed Ant Metric | Median chi^2 Per Antenna (Jee) | Median chi^2 Per Antenna (Jnn) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2459876 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.018943 | 4.534813 | 17.829902 | 29.122180 | 6.056678 | 20.726783 | 0.268839 | -3.772561 | 0.5914 | 0.5743 | 0.4036 | nan | nan |
2459875 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.069516 | 4.215706 | 24.246616 | 39.834850 | 2.723002 | 9.665881 | 4.206379 | 3.699447 | 0.5927 | 0.5799 | 0.4057 | nan | nan |
2459874 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 4.581356 | 6.332420 | 12.321835 | 20.183089 | 3.176015 | 11.789776 | -0.012617 | -3.197709 | 0.5925 | 0.5727 | 0.3963 | nan | nan |
2459873 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.133570 | 3.980772 | 16.465957 | 27.175337 | 0.781790 | 4.336601 | 7.813037 | 2.999608 | 0.5938 | 0.5711 | 0.3947 | nan | nan |
2459872 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 2.605574 | 3.624834 | 22.328664 | 36.177682 | 3.763485 | 12.602855 | 1.460728 | -1.933364 | 0.5911 | 0.5738 | 0.4073 | nan | nan |
2459871 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 2.070557 | 3.087436 | 22.607165 | 37.482542 | 2.588226 | 10.789826 | 5.607385 | 1.073102 | 0.6003 | 0.5734 | 0.4009 | nan | nan |
2459870 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.965493 | 5.568014 | 16.604691 | 27.225894 | 2.468111 | 8.687770 | 2.261826 | -1.612035 | 0.6023 | 0.5808 | 0.4036 | nan | nan |
2459869 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.488235 | 5.150253 | 16.408470 | 27.034825 | 3.590925 | 11.044544 | 1.852908 | 0.450134 | 0.6086 | 0.5882 | 0.4067 | nan | nan |
2459868 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.470107 | 4.933542 | 25.304340 | 42.399518 | 1.294638 | 7.770337 | 0.823705 | -3.408858 | 0.5900 | 0.5710 | 0.4166 | nan | nan |
2459867 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 2.242988 | 3.423579 | 20.224208 | 33.259978 | 1.281484 | 4.810863 | -0.317432 | -2.790350 | 0.6030 | 0.5778 | 0.4168 | nan | nan |
2459866 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 2.670269 | 3.819596 | 18.891665 | 30.695309 | 1.932674 | 5.167513 | 2.112695 | 0.322284 | 0.6085 | 0.5819 | 0.4072 | nan | nan |
2459865 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 4.054416 | 3.886987 | 24.402280 | 39.990465 | 3.492801 | 8.894972 | 3.356052 | 4.982397 | 0.6194 | 0.5827 | 0.4050 | nan | nan |
2459864 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 3.120341 | 4.456871 | 12.684878 | 19.098285 | 1.357140 | 6.030240 | 0.867163 | -2.963685 | 0.6034 | 0.5733 | 0.4289 | nan | nan |
2459863 | digital_maintenance | 0.00% | 0.00% | 0.00% | 0.00% | - | - | 0.713169 | 1.584775 | 0.392369 | 2.241206 | -0.385278 | 0.766396 | -0.175844 | -2.466201 | 0.5971 | 0.5622 | 0.4186 | nan | nan |
2459862 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 1.262010 | 3.212020 | 15.692243 | 23.006504 | 1.471618 | 6.865664 | 1.393657 | -1.541373 | 0.5674 | 0.5810 | 0.4328 | nan | nan |
2459861 | digital_maintenance | 0.00% | 0.00% | 0.00% | 0.00% | - | - | 0.102176 | 0.932126 | -0.703097 | 0.877786 | -1.240411 | -1.224418 | -0.655396 | -2.781764 | 0.6139 | 0.5753 | 0.4335 | nan | nan |
2459860 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | - | - | 1.118043 | 2.452490 | 12.201327 | 17.813002 | 3.752809 | 10.839927 | -0.275705 | -2.180978 | 0.6209 | 0.5746 | 0.4286 | nan | nan |
2459859 | digital_maintenance | 0.00% | 0.00% | 0.00% | 0.00% | - | - | 0.003310 | 0.926465 | -0.505796 | 1.032259 | -1.034506 | -0.956390 | 0.887118 | -1.572391 | 0.6266 | 0.5797 | 0.4245 | nan | nan |
2459858 | digital_maintenance | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | -0.107494 | 0.861621 | -1.072057 | 0.717192 | -1.313868 | -1.410983 | 0.185860 | -2.609380 | 0.6375 | 0.5878 | 0.4393 | 0.000000 | 0.000000 |
2459857 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | - | - | -0.426721 | 7.375474 | 2.243777 | 3.765159 | -0.862617 | 3.129000 | -0.862280 | -1.536751 | 0.0315 | 0.0299 | 0.0011 | nan | nan |
2459856 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 1.861367 | 3.618534 | 11.535022 | 16.613816 | 0.473403 | 6.173482 | 0.596859 | -2.355948 | 0.6231 | 0.5984 | 0.4181 | 0.000000 | 0.000000 |
2459855 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 2.064902 | 4.445657 | 12.713477 | 18.726737 | -0.357791 | 1.283891 | 0.028508 | -1.618631 | 0.5841 | 0.6094 | 0.4545 | 0.000000 | 0.000000 |
2459854 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 1.779312 | 4.069907 | 10.881525 | 15.688910 | 0.459971 | 1.216369 | 0.426964 | -1.220422 | 0.6124 | 0.6522 | 0.4570 | 0.000000 | 0.000000 |
2459853 | digital_maintenance | 100.00% | 0.00% | 0.56% | 0.00% | 100.00% | 0.00% | 1.541159 | 3.045685 | 14.288658 | 19.903204 | 1.682540 | 5.662853 | -0.129659 | -2.979499 | 0.6548 | 0.5894 | 0.4484 | 0.000000 | 0.000000 |
2459852 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 2.933158 | 4.414322 | 14.003640 | 19.506822 | 6.430570 | 11.514605 | 8.740744 | 11.947415 | 0.6899 | 0.6450 | 0.3646 | 0.000000 | 0.000000 |
2459851 | digital_maintenance | 100.00% | 0.00% | 0.00% | 1.07% | 100.00% | 0.00% | 1.254910 | 7.173809 | 15.897550 | 20.885384 | 6.667936 | 23.943632 | 5.821819 | 14.749469 | 0.6667 | 0.6446 | 0.3690 | 0.000000 | 0.000000 |
2459850 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 1.612882 | 3.864819 | 13.513194 | 18.531775 | 1.947333 | 10.505558 | 1.635177 | 6.963674 | 0.0571 | 0.0590 | 0.0096 | 0.000000 | 0.000000 |
2459849 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.124685 | 4.454711 | 27.407454 | 37.593280 | 0.887474 | 6.646210 | 1.200494 | -0.681045 | 0.0630 | 0.0631 | 0.0093 | 0.000000 | 0.000000 |
2459848 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 2.002818 | 4.248146 | 19.757721 | 26.592974 | 2.319882 | 9.508033 | 0.048130 | -1.937607 | 0.0623 | 0.0623 | 0.0100 | 0.000000 | 0.000000 |
2459847 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | nan | nan | inf | inf | nan | nan | nan | nan | nan | nan | nan | 0.000000 | 0.000000 |
2459846 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 8.323945 | 11.942828 | 14.510467 | 19.818536 | 8.327456 | 13.390039 | -0.311703 | -0.698620 | 0.0640 | 0.0551 | 0.0157 | 0.000000 | 0.000000 |
2459845 | digital_maintenance | 100.00% | 0.00% | 0.00% | 0.00% | 100.00% | 0.00% | 3.185298 | 5.309109 | 25.166145 | 34.547848 | 2.025796 | 8.414303 | 3.030138 | -2.062769 | 0.6100 | 0.6077 | 0.4050 | 0.000000 | 0.000000 |
2459844 | digital_maintenance | 100.00% | 100.00% | 100.00% | 0.00% | - | - | 1.536840 | 16.732100 | 62.883360 | 70.795788 | -0.109267 | 1.690105 | 0.138288 | -0.728517 | 0.0311 | 0.0294 | 0.0013 | nan | nan |
2459843 | digital_maintenance | 100.00% | 1.20% | 1.20% | 0.00% | 100.00% | 0.00% | 8.192526 | 9.844353 | 18.077033 | 19.713353 | 4.549552 | 11.260944 | -2.864730 | -3.763338 | 0.6244 | 0.5935 | 0.4282 | 0.000000 | 0.000000 |
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 29.122180 | 3.018943 | 4.534813 | 17.829902 | 29.122180 | 6.056678 | 20.726783 | 0.268839 | -3.772561 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 39.834850 | 3.069516 | 4.215706 | 24.246616 | 39.834850 | 2.723002 | 9.665881 | 4.206379 | 3.699447 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 20.183089 | 4.581356 | 6.332420 | 12.321835 | 20.183089 | 3.176015 | 11.789776 | -0.012617 | -3.197709 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 27.175337 | 3.133570 | 3.980772 | 16.465957 | 27.175337 | 0.781790 | 4.336601 | 7.813037 | 2.999608 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 36.177682 | 3.624834 | 2.605574 | 36.177682 | 22.328664 | 12.602855 | 3.763485 | -1.933364 | 1.460728 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 37.482542 | 3.087436 | 2.070557 | 37.482542 | 22.607165 | 10.789826 | 2.588226 | 1.073102 | 5.607385 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 27.225894 | 3.965493 | 5.568014 | 16.604691 | 27.225894 | 2.468111 | 8.687770 | 2.261826 | -1.612035 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 27.034825 | 3.488235 | 5.150253 | 16.408470 | 27.034825 | 3.590925 | 11.044544 | 1.852908 | 0.450134 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 42.399518 | 3.470107 | 4.933542 | 25.304340 | 42.399518 | 1.294638 | 7.770337 | 0.823705 | -3.408858 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 33.259978 | 2.242988 | 3.423579 | 20.224208 | 33.259978 | 1.281484 | 4.810863 | -0.317432 | -2.790350 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 30.695309 | 3.819596 | 2.670269 | 30.695309 | 18.891665 | 5.167513 | 1.932674 | 0.322284 | 2.112695 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 39.990465 | 4.054416 | 3.886987 | 24.402280 | 39.990465 | 3.492801 | 8.894972 | 3.356052 | 4.982397 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 19.098285 | 4.456871 | 3.120341 | 19.098285 | 12.684878 | 6.030240 | 1.357140 | -2.963685 | 0.867163 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 2.241206 | 0.713169 | 1.584775 | 0.392369 | 2.241206 | -0.385278 | 0.766396 | -0.175844 | -2.466201 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 23.006504 | 1.262010 | 3.212020 | 15.692243 | 23.006504 | 1.471618 | 6.865664 | 1.393657 | -1.541373 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Shape | 0.932126 | 0.932126 | 0.102176 | 0.877786 | -0.703097 | -1.224418 | -1.240411 | -2.781764 | -0.655396 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 17.813002 | 1.118043 | 2.452490 | 12.201327 | 17.813002 | 3.752809 | 10.839927 | -0.275705 | -2.180978 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 1.032259 | 0.003310 | 0.926465 | -0.505796 | 1.032259 | -1.034506 | -0.956390 | 0.887118 | -1.572391 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Shape | 0.861621 | 0.861621 | -0.107494 | 0.717192 | -1.072057 | -1.410983 | -1.313868 | -2.609380 | 0.185860 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Shape | 7.375474 | 7.375474 | -0.426721 | 3.765159 | 2.243777 | 3.129000 | -0.862617 | -1.536751 | -0.862280 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 16.613816 | 1.861367 | 3.618534 | 11.535022 | 16.613816 | 0.473403 | 6.173482 | 0.596859 | -2.355948 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 18.726737 | 4.445657 | 2.064902 | 18.726737 | 12.713477 | 1.283891 | -0.357791 | -1.618631 | 0.028508 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 15.688910 | 4.069907 | 1.779312 | 15.688910 | 10.881525 | 1.216369 | 0.459971 | -1.220422 | 0.426964 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 19.903204 | 3.045685 | 1.541159 | 19.903204 | 14.288658 | 5.662853 | 1.682540 | -2.979499 | -0.129659 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 19.506822 | 2.933158 | 4.414322 | 14.003640 | 19.506822 | 6.430570 | 11.514605 | 8.740744 | 11.947415 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Temporal Variability | 23.943632 | 1.254910 | 7.173809 | 15.897550 | 20.885384 | 6.667936 | 23.943632 | 5.821819 | 14.749469 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 18.531775 | 1.612882 | 3.864819 | 13.513194 | 18.531775 | 1.947333 | 10.505558 | 1.635177 | 6.963674 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 37.593280 | 2.124685 | 4.454711 | 27.407454 | 37.593280 | 0.887474 | 6.646210 | 1.200494 | -0.681045 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 26.592974 | 4.248146 | 2.002818 | 26.592974 | 19.757721 | 9.508033 | 2.319882 | -1.937607 | 0.048130 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Shape | nan | nan | nan | inf | inf | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 19.818536 | 8.323945 | 11.942828 | 14.510467 | 19.818536 | 8.327456 | 13.390039 | -0.311703 | -0.698620 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 34.547848 | 5.309109 | 3.185298 | 34.547848 | 25.166145 | 8.414303 | 2.025796 | -2.062769 | 3.030138 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 70.795788 | 1.536840 | 16.732100 | 62.883360 | 70.795788 | -0.109267 | 1.690105 | 0.138288 | -0.728517 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
322 | N05 | digital_maintenance | nn Power | 19.713353 | 9.844353 | 8.192526 | 19.713353 | 18.077033 | 11.260944 | 4.549552 | -3.763338 | -2.864730 |