Single File Calibration¶

by Josh Dillon, Aaron Parsons, and Tyler Cox, last updated October 3, 2022

This notebook is designed to infer as much information about the array from a single file, including pushing the calibration and RFI mitigation as far as possible

Here's a set of links to skip to particular figures and tables:

• Figure 1: RFI Flagging¶

• Figure 2: Plot of autocorrelations with classifications¶

• Figure 3: Summary of antenna classifications prior to calibration¶

• Figure 4: Redundant calibration of a single baseline group¶

• Figure 5: chi^2 per antenna across the array¶

• Figure 6: Summary of antenna classifications after redundant calibration¶

• Table 1: Complete summary of per antenna classifications¶

In [1]:
import time
tstart = time.time()
In [2]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
from scipy import constants, interpolate
import copy
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.max_rows', 1000)
from uvtools.plot import plot_antpos, plot_antclass
from hera_qm import ant_metrics, ant_class, xrfi
from hera_cal import io, utils, redcal, apply_cal, datacontainer, abscal
from hera_notebook_templates.data import DATA_PATH as HNBT_DATA
from IPython.display import display, HTML
import linsolve
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
In [3]:
# this enables better memory management on linux
import ctypes
def malloc_trim():
    try:
        ctypes.CDLL('libc.so.6').malloc_trim(0) 
    except OSError:
        pass

Parse inputs and outputs¶

To use this notebook interactively, you will have to provide a sum filename path if none exists as an environment variable. All other parameters have reasonable default values.

In [4]:
# figure out whether to save results
SAVE_RESULTS = os.environ.get("SAVE_RESULTS", "TRUE").upper() == "TRUE"

# get infile names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/mnt/sn1/zen.2459797.30001.sum.uvh5'  # If sum_file is not defined in the environment variables, define it here.
DIFF_FILE = SUM_FILE.replace('sum', 'diff')

# get outfilenames
AM_FILE = (SUM_FILE.replace('.uvh5', '.ant_metrics.hdf5') if SAVE_RESULTS else None)
ANTCLASS_FILE = (SUM_FILE.replace('.uvh5', '.ant_class.csv') if SAVE_RESULTS else None)
OMNICAL_FILE = (SUM_FILE.replace('.uvh5', '.omni.calfits') if SAVE_RESULTS else None)
OMNIVIS_FILE = (SUM_FILE.replace('.uvh5', '.omni_vis.uvh5') if SAVE_RESULTS else None)

for fname in ['SUM_FILE', 'DIFF_FILE', 'AM_FILE', 'ANTCLASS_FILE', 'OMNICAL_FILE', 'OMNIVIS_FILE']:
    print(f"{fname} = '{eval(fname)}'")
SUM_FILE = '/mnt/sn1/2459925/zen.2459925.41988.sum.uvh5'
DIFF_FILE = '/mnt/sn1/2459925/zen.2459925.41988.diff.uvh5'
AM_FILE = '/mnt/sn1/2459925/zen.2459925.41988.sum.ant_metrics.hdf5'
ANTCLASS_FILE = '/mnt/sn1/2459925/zen.2459925.41988.sum.ant_class.csv'
OMNICAL_FILE = '/mnt/sn1/2459925/zen.2459925.41988.sum.omni.calfits'
OMNIVIS_FILE = '/mnt/sn1/2459925/zen.2459925.41988.sum.omni_vis.uvh5'

Parse settings¶

Load settings relating to the operation of the notebook, then print what was loaded (or default).

In [5]:
# parse plotting settings
PLOT = os.environ.get("PLOT", "TRUE").upper() == "TRUE"
if PLOT:
    %matplotlib inline

# parse omnical settings
OC_MAX_DIMS = int(os.environ.get("OC_MAX_DIMS", 4))
OC_MIN_DIM_SIZE = int(os.environ.get("OC_MIN_DIM_SIZE", 8))
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"
OC_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_RERUN = int(os.environ.get("OC_MAX_RERUN", 4))
OC_USE_GPU = os.environ.get("SAVE_RESULTS", "FALSE").upper() == "TRUE"

# parse RFI settings
RFI_DPSS_HALFWIDTH = float(os.environ.get("RFI_DPSS_HALFWIDTH", 300e-9))
RFI_NSIG = float(os.environ.get("RFI_NSIG", 6))

# print settings
for setting in ['PLOT', 'SAVE_RESULTS', 'OC_MAX_DIMS', 'OC_MIN_DIM_SIZE', 'OC_SKIP_OUTRIGGERS', 'OC_MAXITER', 'OC_MAX_RERUN',
                'OC_USE_GPU', 'RFI_DPSS_HALFWIDTH', 'RFI_NSIG']:
    print(f'{setting} = {eval(setting)}')
PLOT = True
SAVE_RESULTS = True
OC_MAX_DIMS = 4
OC_MIN_DIM_SIZE = 8
OC_SKIP_OUTRIGGERS = True
OC_MAXITER = 50
OC_MAX_RERUN = 4
OC_USE_GPU = False
RFI_DPSS_HALFWIDTH = 3e-07
RFI_NSIG = 6.0

Parse bounds¶

Load settings related to classifying antennas as good, suspect, or bad, then print what was loaded (or default).

In [6]:
# ant_metrics bounds for low correlation / dead antennas
am_corr_bad = (0, float(os.environ.get("AM_CORR_BAD", 0.3)))
am_corr_suspect = (float(os.environ.get("AM_CORR_BAD", 0.3)), float(os.environ.get("AM_CORR_SUSPECT", 0.5)))

# ant_metrics bounds for cross-polarized antennas
am_xpol_bad = (-1, float(os.environ.get("AM_XPOL_BAD", -0.1)))
am_xpol_suspect = (float(os.environ.get("AM_XPOL_BAD", -0.1)), float(os.environ.get("AM_XPOL_SUSPECT", 0)))

# bounds on zeros in spectra
good_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_GOOD", 2)))
suspect_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_SUSPECT", 8)))

# bounds on autocorrelation power
auto_power_good = (float(os.environ.get("AUTO_POWER_GOOD_LOW", 5)), float(os.environ.get("AUTO_POWER_GOOD_HIGH", 30)))
auto_power_suspect = (float(os.environ.get("AUTO_POWER_SUSPECT_LOW", 1)), float(os.environ.get("AUTO_POWER_SUSPECT_HIGH", 50)))

# bounds on autocorrelation slope
auto_slope_good = (float(os.environ.get("AUTO_SLOPE_GOOD_LOW", -0.4)), float(os.environ.get("AUTO_SLOPE_GOOD_HIGH", 0.4)))
auto_slope_suspect = (float(os.environ.get("AUTO_SLOPE_SUSPECT_LOW", -0.6)), float(os.environ.get("AUTO_SLOPE_SUSPECT_HIGH", 0.6)))

# bounds on autocorrelation RFI
auto_rfi_good = (0, float(os.environ.get("AUTO_RFI_GOOD", 0.01)))
auto_rfi_suspect = (0, float(os.environ.get("AUTO_RFI_SUSPECT", 0.02)))

# bounds on autocorrelation shape
auto_shape_good = (0, float(os.environ.get("AUTO_SHAPE_GOOD", 0.0625)))
auto_shape_suspect = (0, float(os.environ.get("AUTO_SHAPE_SUSPECT", 0.125)))

# bounds on chi^2 per antenna in omnical
oc_cspa_good = (0, float(os.environ.get("OC_CSPA_GOOD", 3)))
oc_cspa_suspect = (float(os.environ.get("OC_CSPA_GOOD", 3)), float(os.environ.get("OC_CSPA_SUSPECT", 6)))

# print bounds
for bound in ['am_corr_bad', 'am_corr_suspect', 'am_xpol_bad', 'am_xpol_suspect', 
              'good_zeros_per_eo_spectrum', 'suspect_zeros_per_eo_spectrum',
              'auto_power_good', 'auto_power_suspect', 'auto_slope_good', 'auto_slope_suspect',
              'auto_rfi_good', 'auto_rfi_suspect', 'auto_shape_good', 'auto_shape_suspect',
              'oc_cspa_good', 'oc_cspa_suspect']:
    print(f'{bound} = {eval(bound)}')
am_corr_bad = (0, 0.2)
am_corr_suspect = (0.2, 0.4)
am_xpol_bad = (-1, -0.1)
am_xpol_suspect = (-0.1, 0.0)
good_zeros_per_eo_spectrum = (0, 2)
suspect_zeros_per_eo_spectrum = (0, 8)
auto_power_good = (5.0, 30.0)
auto_power_suspect = (1.0, 50.0)
auto_slope_good = (-0.4, 0.4)
auto_slope_suspect = (-0.6, 0.6)
auto_rfi_good = (0, 0.01)
auto_rfi_suspect = (0, 0.02)
auto_shape_good = (0, 0.0625)
auto_shape_suspect = (0, 0.125)
oc_cspa_good = (0, 3.0)
oc_cspa_suspect = (3.0, 6.0)

Load sum and diff data¶

In [7]:
hd = io.HERADataFastReader(SUM_FILE)
data, _, _ = hd.read(read_flags=False, read_nsamples=False)
hd_diff = io.HERADataFastReader(DIFF_FILE)
diff_data, _, _ = hd_diff.read(read_flags=False, read_nsamples=False)
In [8]:
ants = sorted(set([ant for bl in hd.bls for ant in utils.split_bl(bl)]))
auto_bls = [bl for bl in data if (bl[0] == bl[1]) and (utils.split_pol(bl[2])[0] == utils.split_pol(bl[2])[1])]
antpols = sorted(set([ant[1] for ant in ants]))
In [9]:
# print basic information about the file
print(f'File: {SUM_FILE}')
print(f'JDs: {hd.times} ({np.median(np.diff(hd.times)) * 24 * 3600:.5f} s integrations)')
print(f'LSTS: {hd.lsts * 12 / np.pi } hours')
print(f'Frequencies: {len(hd.freqs)} {np.median(np.diff(hd.freqs)) / 1e6:.5f} MHz channels from {hd.freqs[0] / 1e6:.5f} to {hd.freqs[-1] / 1e6:.5f} MHz')
print(f'Antennas: {len(hd.data_ants)}')
print(f'Polarizations: {hd.pols}')
File: /mnt/sn1/2459925/zen.2459925.41988.sum.uvh5
JDs: [2459925.4198193  2459925.41993115] (9.66368 s integrations)
LSTS: [4.87730651 4.87999821] hours
Frequencies: 1536 0.12207 MHz channels from 46.92078 to 234.29871 MHz
Antennas: 201
Polarizations: ['nn', 'ee', 'ne', 'en']

Classify good, suspect, and bad antpols¶

Run ant_metrics¶

This classifies antennas as cross-polarized, low-correlation, or dead. Such antennas are excluded from any calibration.

In [10]:
am = ant_metrics.AntennaMetrics(SUM_FILE, DIFF_FILE, sum_data=data, diff_data=diff_data)
am.iterative_antenna_metrics_and_flagging(crossCut=am_xpol_bad[1], deadCut=am_corr_bad[1])
am.all_metrics = {}  # this saves time and disk by getting rid of per-iteration information we never use
if SAVE_RESULTS:
    am.save_antenna_metrics(AM_FILE, overwrite=True)
In [11]:
# Turn ant metrics into classifications
totally_dead_ants = [ant for ant, i in am.xants.items() if i == -1]
am_totally_dead = ant_class.AntennaClassification(good=[ant for ant in ants if ant not in totally_dead_ants], bad=totally_dead_ants)
am_corr = ant_class.antenna_bounds_checker(am.final_metrics['corr'], bad=[am_corr_bad], suspect=[am_corr_suspect], good=[(0, 1)])
am_xpol = ant_class.antenna_bounds_checker(am.final_metrics['corrXPol'], bad=[am_xpol_bad], suspect=[am_xpol_suspect], good=[(-1, 1)])
ant_metrics_class = am_totally_dead + am_corr + am_xpol

Classify antennas responsible for 0s in visibilities as bad:¶

This classifier looks for X-engine failure or packet loss specific to an antenna which causes either the even visibilities (or the odd ones, or both) to be 0s.

In [12]:
zeros_class = ant_class.even_odd_zeros_checker(data, diff_data, good=good_zeros_per_eo_spectrum, suspect=suspect_zeros_per_eo_spectrum)
In [13]:
# delete diffs to save memory
del diff_data, hd_diff
malloc_trim()

Examine and classify autocorrelation power, slope, and RFI occpancy¶

These classifiers look for antennas with too high or low power, to steep a slope, or too much excess RFI.

In [14]:
auto_power_class = ant_class.auto_power_checker(data, good=auto_power_good, suspect=auto_power_suspect)
auto_slope_class = ant_class.auto_slope_checker(data, good=auto_slope_good, suspect=auto_slope_suspect, edge_cut=100, filt_size=17)
cache = {}
auto_rfi_class = ant_class.auto_rfi_checker(data, good=auto_rfi_good, suspect=auto_rfi_suspect, 
                                            filter_half_widths=[RFI_DPSS_HALFWIDTH], nsig=RFI_NSIG, cache=cache)
auto_class = auto_power_class + auto_slope_class + auto_rfi_class
In [15]:
del cache
malloc_trim()

Find and flag RFI¶

In [16]:
# Compute int_count for all unflagged autocorrelations averaged together
int_time = 24 * 3600 * np.median(np.diff(data.times_by_bl[auto_bls[0][0:2]]))
chan_res = np.median(np.diff(data.freqs))
final_class = ant_metrics_class + zeros_class + auto_class
int_count = int(int_time * chan_res) * (len(final_class.good_ants) + len(final_class.suspect_ants))
avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls if final_class[utils.split_bl(bl)[0]] != 'bad'], axis=0)}
# Flag RFI first with channel differences and then with DPSS
antenna_flags, _ = xrfi.flag_autos(avg_auto, int_count=int_count, nsig=(RFI_NSIG * 5))
_, rfi_flags = xrfi.flag_autos(avg_auto, int_count=int_count, flag_method='dpss_flagger',
                               flags=antenna_flags, freqs=data.freqs, filter_centers=[0],
                               filter_half_widths=[RFI_DPSS_HALFWIDTH], eigenval_cutoff=[1e-9], nsig=RFI_NSIG)
malloc_trim()
In [17]:
def rfi_plot():
    plt.figure(figsize=(12, 5), dpi=100)
    plt.semilogy(hd.freqs / 1e6, np.where(rfi_flags, np.nan, avg_auto[(-1, -1, 'ee')])[1], label = 'Average Good or Suspect Autocorrelation', zorder=100)
    plt.semilogy(hd.freqs / 1e6, np.where(False, np.nan, avg_auto[(-1, -1, 'ee')])[1], 'r', lw=.5, label=f'{np.sum(rfi_flags[0])} Channels Flagged for RFI')
    plt.legend()
    plt.xlabel('Frequency (MHz)')
    plt.ylabel('Uncalibrated Autocorrelation')
    plt.tight_layout()

Figure 1: RFI Flagging¶

This figure shows RFI identified using the average of all autocorrelations---excluding bad antennas---for the first integration in the file.

In [18]:
rfi_plot()
In [19]:
def autocorr_plot(cls):    
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100, sharey=True, gridspec_kw={'wspace': 0})
    labels = []
    colors = ['darkgreen', 'goldenrod', 'maroon']
    for ax, pol in zip(axes, antpols):
        for ant in cls.ants:
            if ant[1] == pol:
                color = colors[cls.quality_classes.index(cls[ant])]
                ax.semilogy(np.mean(data[utils.join_bl(ant, ant)], axis=0), color=color, lw=.5)
        ax.set_xlabel('Channel', fontsize=12)
        ax.set_title(f'{utils.join_pol(pol, pol)}-Polarized Autos')

    axes[0].set_ylabel('Raw Autocorrelation', fontsize=12)
    axes[1].legend([matplotlib.lines.Line2D([0], [0], color=color) for color in colors], 
                   [cls.capitalize() for cls in auto_class.quality_classes], ncol=1, fontsize=12, loc='upper right', framealpha=1)
    plt.tight_layout()

Classify antennas based on shapes, excluding RFI-contamined channels¶

In [20]:
auto_shape_class = ant_class.auto_shape_checker(data, good=auto_shape_good, suspect=auto_shape_suspect,
                                                flag_spectrum=np.sum(rfi_flags, axis=0).astype(bool), antenna_class=final_class)
auto_class += auto_shape_class

Figure 2: Plot of autocorrelations with classifications¶

This figure shows a plot of all autocorrelations in the array, split by polarization. Antennas are classified based on their autocorrelations into good, suspect, and bad, by examining power, slope, and RFI-occupancy.

In [21]:
if PLOT: autocorr_plot(auto_class)

Summarize antenna classification prior to redundant-baseline calibration¶

In [22]:
final_class = ant_metrics_class + zeros_class + auto_class
In [23]:
def array_class_plot(cls):
    fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
    plot_antclass(hd.antpos, cls, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title='HERA Core')
    plot_antclass(hd.antpos, cls, ax=axes[1], ants=[ant for ant in hd.data_ants if ant >= 320], radius=50, title='Outriggers')

Figure 3: Summary of antenna classifications prior to calibration¶

This figure shows the location and classification of all antennas prior to calibration. Antennas are split along the diagonal, with ee-polarized antpols represented by the southeast half of each antenna and nn-polarized antpols represented by the northwest half. Outriggers are split from the core and shown at exaggerated size in the right-hand panel. This classification includes ant_metrics, a count of the zeros in the even or odd visibilities, and autocorrelation power, slope, and RFI occupancy. An antenna classified as bad in any classification will be considered bad. An antenna marked as suspect any in any classification will be considered suspect unless it is also classified as bad elsewhere.

In [24]:
if PLOT: array_class_plot(final_class)

Perform redundant-baseline calibration¶

In [25]:
def classify_off_grid(reds, all_ants):
    '''Returns AntennaClassification of all_ants where good ants are in reds while bad ants are not.'''
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])
    on_grid = [ant for ant in all_ants if ant in ants_in_reds]
    off_grid = [ant for ant in all_ants if ant not in ants_in_reds]
    return ant_class.AntennaClassification(good=on_grid, bad=off_grid)

Perform iterative redcal¶

In [26]:
redcal_start = time.time()
rc_settings = {'max_dims': OC_MAX_DIMS, 'oc_conv_crit': 1e-10, 'gain': 0.4, 
               'oc_maxiter': OC_MAXITER, 'check_after': OC_MAXITER, 'use_gpu': OC_USE_GPU}

# figure out and filter reds and classify antennas based on whether or not they are on the main grid
reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
reds = redcal.filter_reds(reds, ex_ants=final_class.bad_ants, max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
if OC_SKIP_OUTRIGGERS:
    reds = redcal.filter_reds(reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
redcal_class = classify_off_grid(reds, ants)

# perform first stage of redundant calibration, 
cal = redcal.redundantly_calibrate(data, reds, **rc_settings)
malloc_trim()
max_dly = np.max(np.abs(list(cal['fc_meta']['dlys'].values())))
med_cspa = {ant: np.median(cal['chisq_per_ant'][ant]) for ant in cal['chisq_per_ant']}
cspa_class = ant_class.antenna_bounds_checker(med_cspa, good=np.array(oc_cspa_good)*5, suspect=np.array(oc_cspa_suspect)*5, bad=(0, np.inf))
redcal_class += cspa_class
print(f'Removing {cspa_class.bad_ants} for high chi^2.')

# iteratively rerun redundant calibration
for i in range(OC_MAX_RERUN):
    # build RedDataContainer of old visibility solution
    prior_vis = datacontainer.RedDataContainer(cal['v_omnical'], reds)
    
    # refilter reds and update classification to reflect new off-grid ants, if any
    reds = redcal.filter_reds(reds, ex_ants=(final_class + redcal_class).bad_ants, max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
    reds = sorted(reds, key=len, reverse=True)
    redcal_class += classify_off_grid(reds, ants)
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])    
   
    # re-run redundant calibration using previous solution, updating bad and suspicious antennas
    prior_sol = redcal.RedSol(reds, gains={ant: cal['g_omnical'][ant] for ant in ants_in_reds}, 
                              vis={red[0]: prior_vis[red[0]] for red in reds})    
    cal = redcal.redundantly_calibrate(data, reds, prior_firstcal=prior_sol.gains, prior_sol=prior_sol, **rc_settings)
    malloc_trim()
    med_cspa = {ant: np.median(cal['chisq_per_ant'][ant]) for ant in cal['chisq_per_ant']}
    cspa_class = ant_class.antenna_bounds_checker(med_cspa, good=oc_cspa_good, suspect=oc_cspa_suspect, bad=(0, np.inf))
    redcal_class += cspa_class
    print(f'Removing {cspa_class.bad_ants} for high chi^2.')
    if len(cspa_class.bad_ants) == 0:
        break  # no new antennas to flag
final_class += redcal_class
print(f'Finished redcal in {(time.time() - redcal_start) / 60:.2f} minutes.')
Removing {(121, 'Jnn'), (222, 'Jnn'), (83, 'Jee'), (162, 'Jee'), (228, 'Jee'), (239, 'Jee'), (83, 'Jnn'), (162, 'Jnn'), (239, 'Jnn'), (241, 'Jee'), (122, 'Jnn'), (98, 'Jnn'), (56, 'Jee'), (124, 'Jee'), (135, 'Jee'), (190, 'Jee'), (241, 'Jnn'), (135, 'Jnn'), (245, 'Jnn'), (179, 'Jee'), (141, 'Jee'), (207, 'Jee'), (179, 'Jnn'), (205, 'Jee'), (73, 'Jnn'), (207, 'Jnn'), (220, 'Jee'), (90, 'Jee'), (101, 'Jee'), (169, 'Jee'), (165, 'Jnn'), (220, 'Jnn'), (90, 'Jnn'), (101, 'Jnn'), (37, 'Jee'), (182, 'Jee'), (158, 'Jee'), (237, 'Jee'), (52, 'Jee'), (107, 'Jee'), (118, 'Jee'), (186, 'Jee'), (37, 'Jnn'), (158, 'Jnn'), (237, 'Jnn'), (52, 'Jnn'), (107, 'Jnn'), (118, 'Jnn'), (186, 'Jnn'), (120, 'Jee'), (144, 'Jee'), (69, 'Jee'), (120, 'Jnn'), (69, 'Jnn'), (124, 'Jnn'), (71, 'Jee'), (82, 'Jee'), (137, 'Jee'), (161, 'Jee'), (227, 'Jee'), (86, 'Jee'), (82, 'Jnn'), (71, 'Jnn'), (137, 'Jnn'), (86, 'Jnn'), (88, 'Jee'), (99, 'Jee'), (167, 'Jee'), (244, 'Jee'), (88, 'Jnn'), (167, 'Jnn'), (244, 'Jnn'), (180, 'Jee'), (191, 'Jee'), (103, 'Jnn'), (129, 'Jee'), (105, 'Jee'), (116, 'Jee'), (127, 'Jee'), (140, 'Jee'), (206, 'Jee'), (65, 'Jee'), (50, 'Jnn'), (140, 'Jnn'), (105, 'Jnn'), (206, 'Jnn'), (261, 'Jnn'), (184, 'Jee'), (65, 'Jnn'), (67, 'Jee'), (89, 'Jee'), (157, 'Jee'), (168, 'Jee'), (223, 'Jee'), (184, 'Jnn'), (67, 'Jnn'), (89, 'Jnn'), (144, 'Jnn'), (157, 'Jnn'), (168, 'Jnn'), (223, 'Jnn'), (40, 'Jee'), (106, 'Jee'), (146, 'Jnn'), (106, 'Jnn'), (185, 'Jnn'), (187, 'Jee'), (163, 'Jee'), (46, 'Jee'), (68, 'Jee'), (123, 'Jee'), (136, 'Jee'), (202, 'Jee'), (72, 'Jee'), (187, 'Jnn'), (163, 'Jnn'), (242, 'Jnn'), (123, 'Jnn'), (202, 'Jnn'), (70, 'Jee'), (125, 'Jee'), (160, 'Jee'), (85, 'Jee'), (164, 'Jee'), (70, 'Jnn'), (160, 'Jnn'), (125, 'Jnn'), (85, 'Jnn'), (164, 'Jnn'), (87, 'Jee'), (166, 'Jee'), (142, 'Jee'), (221, 'Jee'), (36, 'Jee'), (102, 'Jee'), (181, 'Jee'), (87, 'Jnn'), (155, 'Jnn'), (166, 'Jnn'), (221, 'Jnn'), (243, 'Jnn'), (36, 'Jnn'), (126, 'Jnn'), (102, 'Jnn'), (181, 'Jnn'), (38, 'Jee'), (104, 'Jee'), (139, 'Jee'), (159, 'Jee'), (183, 'Jee'), (238, 'Jee'), (51, 'Jnn'), (53, 'Jee'), (143, 'Jee'), (38, 'Jnn'), (183, 'Jnn'), (238, 'Jnn'), (143, 'Jnn'), (66, 'Jee'), (145, 'Jee'), (121, 'Jee'), (156, 'Jee'), (222, 'Jee'), (66, 'Jnn'), (145, 'Jnn')} for high chi^2.
Removing {(132, 'Jnn'), (15, 'Jnn'), (17, 'Jee'), (43, 'Jee'), (17, 'Jnn'), (43, 'Jnn'), (45, 'Jee'), (111, 'Jee'), (5, 'Jee'), (60, 'Jee'), (34, 'Jnn'), (45, 'Jnn'), (190, 'Jnn'), (5, 'Jnn'), (7, 'Jee'), (62, 'Jee'), (73, 'Jee'), (22, 'Jee'), (77, 'Jee'), (7, 'Jnn'), (62, 'Jnn'), (9, 'Jee'), (130, 'Jee'), (22, 'Jnn'), (77, 'Jnn'), (35, 'Jee'), (79, 'Jee'), (114, 'Jee'), (9, 'Jnn'), (130, 'Jnn'), (35, 'Jnn'), (114, 'Jnn'), (79, 'Jnn'), (169, 'Jnn'), (41, 'Jnn'), (80, 'Jee'), (210, 'Jnn'), (3, 'Jnn'), (150, 'Jee'), (20, 'Jee'), (31, 'Jee'), (97, 'Jee'), (16, 'Jnn'), (150, 'Jnn'), (20, 'Jnn'), (31, 'Jnn'), (97, 'Jnn'), (44, 'Jee'), (48, 'Jee'), (44, 'Jnn'), (189, 'Jnn'), (246, 'Jee'), (48, 'Jnn'), (61, 'Jee'), (10, 'Jee'), (191, 'Jnn'), (61, 'Jnn'), (127, 'Jnn'), (63, 'Jee'), (10, 'Jnn'), (93, 'Jee'), (78, 'Jnn'), (133, 'Jnn'), (93, 'Jnn'), (95, 'Jee'), (170, 'Jnn'), (95, 'Jnn'), (112, 'Jee'), (46, 'Jnn'), (57, 'Jnn'), (112, 'Jnn'), (8, 'Jee'), (19, 'Jee'), (74, 'Jee'), (30, 'Jee'), (4, 'Jnn'), (59, 'Jnn'), (8, 'Jnn'), (19, 'Jnn'), (74, 'Jnn'), (21, 'Jee'), (129, 'Jnn'), (30, 'Jnn'), (91, 'Jee'), (21, 'Jnn'), (47, 'Jnn'), (91, 'Jnn'), (49, 'Jee'), (115, 'Jee'), (64, 'Jee'), (49, 'Jnn'), (115, 'Jnn'), (64, 'Jnn'), (132, 'Jee'), (211, 'Jee')} for high chi^2.
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In [26], line 35
     32 # re-run redundant calibration using previous solution, updating bad and suspicious antennas
     33 prior_sol = redcal.RedSol(reds, gains={ant: cal['g_omnical'][ant] for ant in ants_in_reds}, 
     34                           vis={red[0]: prior_vis[red[0]] for red in reds})    
---> 35 cal = redcal.redundantly_calibrate(data, reds, prior_firstcal=prior_sol.gains, prior_sol=prior_sol, **rc_settings)
     36 malloc_trim()
     37 med_cspa = {ant: np.median(cal['chisq_per_ant'][ant]) for ant in cal['chisq_per_ant']}

File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/hera_cal/redcal.py:1682, in redundantly_calibrate(data, reds, freqs, times_by_bl, oc_conv_crit, oc_maxiter, check_every, check_after, gain, max_dims, prior_firstcal, prior_sol, use_gpu)
   1680 dts_by_bl = DataContainer({bl: infer_dt(times_by_bl, bl, default_dt=SEC_PER_DAY**-1) * SEC_PER_DAY for bl in red_bls})
   1681 data_wgts = DataContainer({bl: predict_noise_variance_from_autos(bl, data, dt=dts_by_bl[bl])**-1 for bl in red_bls})
-> 1682 rv['omni_meta'], omni_sol = rc.omnical(data, prior_sol, wgts=data_wgts, conv_crit=oc_conv_crit, maxiter=oc_maxiter,
   1683                                        check_every=check_every, check_after=check_after, gain=gain)
   1685 # update omnical flags and then remove degeneracies
   1686 rv['g_omnical'], rv['v_omnical'] = get_gains_and_vis_from_sol(omni_sol)

File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/hera_cal/redcal.py:1184, in RedundantCalibrator.omnical(self, data, sol0, wgts, gain, conv_crit, maxiter, check_every, check_after, wgt_func)
   1182 sol0 = {self.pack_sol_key(k): sol0[k] for k in sol0}
   1183 ls = self._solver(OmnicalSolver, data, sol0=sol0, wgts=wgts, gain=gain)
-> 1184 meta, sol = ls.solve_iteratively(conv_crit=conv_crit, maxiter=maxiter, check_every=check_every, check_after=check_after, wgt_func=wgt_func)
   1185 sol = RedSol(self.reds, sol_dict={self.unpack_sol_key(k): sol[k] for k in sol.keys()})
   1186 return meta, sol

File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/hera_cal/redcal.py:764, in OmnicalSolver.solve_iteratively(self, conv_crit, maxiter, check_every, check_after, wgt_func, verbose)
    762 clamp_wgts_u = {k: v * wgt_func(abs2_u[k]) for k, v in wgts_u.items()}
    763 sol_u = {k: v[update].flatten() for k, v in sol.items()}
--> 764 iters = np.zeros(chisq.shape, dtype=int)
    765 conv = np.ones_like(chisq)
    766 for i in range(1, maxiter + 1):

AttributeError: 'int' object has no attribute 'shape'

Fix the firstcal delay slope degeneracy using RFI transmitters¶

In [27]:
# find channels clearly contaminated by RFI
not_bad_ants = [ant for ant in final_class.ants if final_class[ant] != 'bad']
chan_flags = np.mean([xrfi.detrend_medfilt(data[utils.join_bl(ant, ant)], Kf=8, Kt=2) for ant in not_bad_ants], axis=(0, 1)) > 5

# hardcoded RFI transmitters and their headings
# channel: frequency (Hz), heading (rad), chi^2
phs_sol = {359: ( 90744018.5546875, 0.7853981, 23.3),
           360: ( 90866088.8671875, 0.7853981, 10.8),
           385: ( 93917846.6796875, 0.7853981, 27.3),
           386: ( 94039916.9921875, 0.7853981, 18.1),
           400: ( 95748901.3671875, 6.0632738, 24.0),
           441: (100753784.1796875, 0.7853981, 21.7),
           442: (100875854.4921875, 0.7853981, 19.4),
           455: (102462768.5546875, 6.0632738, 18.8),
           456: (102584838.8671875, 6.0632738,  8.8),
           471: (104415893.5546875, 0.7853981, 13.3),
           484: (106002807.6171875, 6.0632738, 21.2),
           485: (106124877.9296875, 6.0632738,  4.0),
          1181: (191085815.4296875, 0.7853981, 26.3),
          1182: (191207885.7421875, 0.7853981, 27.0),
          1183: (191329956.0546875, 0.7853981, 25.6),
          1448: (223678588.8671875, 2.6075219, 25.7),
          1449: (223800659.1796875, 2.6075219, 22.6),
          1450: (223922729.4921875, 2.6075219, 11.6),
          1451: (224044799.8046875, 2.6075219,  5.9),
          1452: (224166870.1171875, 2.6075219, 22.6),
          1510: (231246948.2421875, 0.1068141, 23.9)}
rfi_chans = [chan for chan in phs_sol if chan_flags[chan]]
print('Channels used for delay-slope calibration with RFI:', rfi_chans)
rfi_angles = np.array([phs_sol[chan][1] for chan in rfi_chans])
rfi_headings = np.array([np.cos(rfi_angles), np.sin(rfi_angles), np.zeros_like(rfi_angles)])
rfi_chisqs = np.array([phs_sol[chan][2] for chan in rfi_chans])
Channels used for delay-slope calibration with RFI: [359, 360, 385, 386, 400, 441, 455, 456, 471, 485]
In [28]:
# resolve firstcal degeneracy with delay slopes set by RFI transmitters, update cal
RFI_dly_slope_gains = abscal.RFI_delay_slope_cal(reds, hd.antpos, cal['v_omnical'], hd.freqs, rfi_chans, rfi_headings, rfi_wgts=rfi_chisqs**-.5,
                                                 min_tau=-max_dly, max_tau=max_dly, delta_tau=0.1e-9, return_gains=True, gain_ants=cal['g_omnical'].keys())
cal['g_omnical'] = {ant: g * RFI_dly_slope_gains[ant] for ant, g in cal['g_omnical'].items()}
apply_cal.calibrate_in_place(cal['v_omnical'], RFI_dly_slope_gains)
malloc_trim()
---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
Cell In [28], line 2
      1 # resolve firstcal degeneracy with delay slopes set by RFI transmitters, update cal
----> 2 RFI_dly_slope_gains = abscal.RFI_delay_slope_cal(reds, hd.antpos, cal['v_omnical'], hd.freqs, rfi_chans, rfi_headings, rfi_wgts=rfi_chisqs**-.5,
      3                                                  min_tau=-max_dly, max_tau=max_dly, delta_tau=0.1e-9, return_gains=True, gain_ants=cal['g_omnical'].keys())
      4 cal['g_omnical'] = {ant: g * RFI_dly_slope_gains[ant] for ant, g in cal['g_omnical'].items()}
      5 apply_cal.calibrate_in_place(cal['v_omnical'], RFI_dly_slope_gains)

File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/hera_cal/abscal.py:933, in RFI_delay_slope_cal(reds, antpos, red_data, freqs, rfi_chans, rfi_headings, rfi_wgts, min_tau, max_tau, delta_tau, return_gains, gain_ants)
    931 # check that reds are 1pol or 2pol
    932 if redcal.parse_pol_mode(reds) not in ['1pol', '2pol']:
--> 933     raise NotImplementedError('RFI_delay_slope_cal cannot currently handle 4pol calibration.')
    935 # compute unique baseline vectors and idealized baseline vectors if desired
    936 unique_blvecs = {red[0]: np.mean([antpos[bl[1]] - antpos[bl[0]] for bl in red], axis=0) for red in reds}

NotImplementedError: RFI_delay_slope_cal cannot currently handle 4pol calibration.

Perform approximate absolute amplitude calibration using a model of autocorrelations¶

In [29]:
# Load simulated and then downsampled model of autocorrelations that includes receiver noise, then interpolate to upsample
hd_model = io.HERADataFastReader(f'{HNBT_DATA}/SSM_autocorrelations_downsampled.uvh5')
model, _, _ = hd_model.read(read_flags=False, read_nsamples=False)
per_pol_interpolated_model = {}
for bl in model:
    sorted_lsts, lst_indices = np.unique(model.lsts, return_index=True)
    periodic_model = np.vstack([model[bl][lst_indices, :], model[bl][lst_indices[0], :]])
    periodic_lsts = np.append(sorted_lsts, sorted_lsts[0] + 2 * np.pi)
    lst_interpolated = interpolate.CubicSpline(periodic_lsts, periodic_model, axis=0, bc_type='periodic')(data.lsts)
    per_pol_interpolated_model[bl[2]] = interpolate.CubicSpline(model.freqs, lst_interpolated, axis=1)(data.freqs)
model = {bl: per_pol_interpolated_model[bl[2]] for bl in auto_bls if utils.split_bl(bl)[0] not in final_class.bad_ants}    
In [30]:
# Run abscal and update omnical gains with abscal gains
redcaled_autos = datacontainer.DataContainer({bl: np.array(data[bl]) for bl in auto_bls if utils.split_bl(bl)[0] not in final_class.bad_ants})
apply_cal.calibrate_in_place(redcaled_autos, cal['g_omnical'])
g_abscal = abscal.abs_amp_lincal(model, redcaled_autos, verbose=False, return_gains=True, gain_ants=cal['g_omnical'])
cal['g_omnical'] = {ant: g * g_abscal[ant] for ant, g in cal['g_omnical'].items()}
apply_cal.calibrate_in_place(cal['v_omnical'], g_abscal)
In [31]:
del hd_model, model, redcaled_autos
malloc_trim()
In [32]:
def redundant_group_plot():
    fig, axes = plt.subplots(2, 2, figsize=(14, 6), dpi=100, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0})
    for i, pol in enumerate(['ee', 'nn']):
        reds_here = redcal.get_reds(hd.data_antpos, pols=[pol], pol_mode='1pol')
        red = sorted(redcal.filter_reds(reds_here, ex_ants=final_class.bad_ants), key=len, reverse=True)[0]
        rc_data = {bl: np.array(data[bl]) for bl in red}
        apply_cal.calibrate_in_place(rc_data, cal['g_omnical'])
        for bl in red:
            axes[0, i].plot(hd.freqs/1e6, np.angle(rc_data[bl][0]), alpha=.5, lw=.5)
            axes[1, i].semilogy(hd.freqs/1e6, np.abs(rc_data[bl][0]), alpha=.5, lw=.5)
        axes[0, i].plot(hd.freqs / 1e6, np.angle(cal['v_omnical'][red[0]][0]), lw=1, c='k')
        axes[1, i].semilogy(hd.freqs / 1e6, np.abs(cal['v_omnical'][red[0]][0]), lw=1, c='k', label=f'Baseline Group:\n{red[0]}')
        axes[1, i].set_xlabel('Frequency (MHz)')
        axes[1, i].legend(loc='upper right')
    axes[0, 0].set_ylabel('Visibility Phase (radians)')
    axes[1, 0].set_ylabel('Visibility Amplitude (Jy)')
    plt.tight_layout()

Figure 4: Redundant calibration of a single baseline group¶

The results of a redundant-baseline calibration of a single integration and a single group, the one with the highest redundancy in each polarization after antenna classification and excision based on the above, plus the removal of antennas with high chi^2 per antenna. The black line is the redundant visibility solution. Each thin colored line is a different baseline group. Phases are shown in the top row, amplitudes in the bottom, ee-polarized visibilities in the left column, and nn-polarized visibilities in the right.

In [33]:
if PLOT: redundant_group_plot()

Attempt to calibrate some flagged antennas¶

This attempts to calibrate bad antennas using information from good or suspect antennas without allowing bad antennas to affect their calibration. However antennas flagged for ant_metrics or lots of zeros in the even or odd visibilities are considered beyond saving. Likewise, some antennas would add extra degeneracies (controlled by OC_MAX_DIMS, OC_MIN_DIM_SIZE, and OC_SKIP_OUTRIGGERS) are excluded.

In [34]:
expand_start = time.time()
expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=(ant_metrics_class + zeros_class).bad_ants, max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
if OC_SKIP_OUTRIGGERS:
    expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
nsamples = datacontainer.DataContainer({bl: np.ones_like(data[bl], dtype=float) for bl in data})
redcal.expand_omni_sol(cal, expanded_reds, data, nsamples)
malloc_trim()
print(f'Finished expanding omni_sol in {(time.time() - expand_start) / 60:.2f} minutes.')
Finished expanding omni_sol in 5.27 minutes.
In [35]:
def array_chisq_plot():
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100)
    for ax, pol in zip(axes, ['ee', 'nn']):
        ants_to_plot = set([ant for ant in cal['chisq_per_ant'] if utils.join_pol(ant[1], ant[1]) == pol])
        cspas = [np.median(cal['chisq_per_ant'][ant]) for ant in ants_to_plot]
        xpos = [hd.antpos[ant[0]][0] for ant in ants_to_plot]
        ypos = [hd.antpos[ant[0]][1] for ant in ants_to_plot]
        scatter = ax.scatter(xpos, ypos, s=300, c=cspas, norm=matplotlib.colors.LogNorm(vmin=1, vmax=oc_cspa_suspect[1]))
        for ant in ants_to_plot:
            ax.text(hd.antpos[ant[0]][0], hd.antpos[ant[0]][1], ant[0], va='center', ha='center', fontsize=9,
                    c=('r' if ant in final_class.bad_ants else 'w'))
        plt.colorbar(scatter, ax=ax, extend='both')
        ax.axis('equal')
        ax.set_xlabel('East-West Position (meters)')
        ax.set_ylabel('North-South Position (meters)')
        ax.set_title(f'{pol}-pol $\\chi^2$ / Antenna (Red is Flagged)')
    plt.tight_layout()

Figure 5: chi^2 per antenna across the array¶

This plot shows median (taken over time and frequency) of the normalized chi^2 per antenna. The expectation value for this quantity when the array is perfectly redundant is 1.0. Antennas that are classified as bad for any reason have their numbers shown in red. Some of those antennas were classified as bad during redundant calibration for high chi^2. Some of those antennas were originally excluded from redundant calibration because they were classified as bad earlier for some reason. See here for more details. Note that the color scale saturates at below 1 and above 10.

In [36]:
if PLOT: array_chisq_plot()
In [37]:
def array_class_after_redcal_plot():
    fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
    plot_antclass(hd.antpos, final_class, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title='HERA Core, Post-Redcal')
    plot_antclass(hd.antpos, final_class, ax=axes[1], ants=[ant for ant in hd.data_ants if ant >= 320], radius=50, title='Outriggers')

Figure 6: Summary of antenna classifications after redundant calibration¶

This figure is the same as Figure 2, except that it now includes additional suspect or bad antennas based on redundant calibration. This can include antennas with high chi^2, but it can also include antennas classified as "bad" because they would add extra degeneracies to calibration.

In [38]:
if PLOT: array_class_after_redcal_plot()
In [39]:
to_show = {'Antenna': [f'{ant[0]}{ant[1][-1]}' for ant in ants]}
classes = {'Antenna': [final_class[ant] if ant in final_class else '-' for ant in ants]}
to_show['Dead?'] = [{'good': 'No', 'bad': 'Yes'}[am_totally_dead[ant]] if (ant in am_totally_dead) else '' for ant in ants]
classes['Dead?'] = [am_totally_dead[ant] if (ant in am_totally_dead) else '' for ant in ants]
for title, ac in [('Low Correlation', am_corr),
                  ('Cross-Polarized', am_xpol),
                  ('Even/Odd Zeros', zeros_class),
                  ('Autocorr Power', auto_power_class),
                  ('Autocorr Slope', auto_slope_class),
                  ('RFI in Autos', auto_rfi_class),
                  ('Autocorr Shape', auto_shape_class)]:
    to_show[title] = [f'{ac._data[ant]:.2G}' if (ant in ac._data) else '' for ant in ants]
    classes[title] = [ac[ant] if ant in ac else '' for ant in ants]
    
to_show['Redcal chi^2'] = [f'{np.median(cal["chisq_per_ant"][ant]):.3G}' if (ant in cal['chisq_per_ant']) else '-' for ant in ants]
classes['Redcal chi^2'] = [redcal_class[ant] if ant in redcal_class else '' for ant in ants]

df = pd.DataFrame(to_show)
df_classes = pd.DataFrame(classes)
colors = {'good': 'darkgreen', 'suspect': 'goldenrod', 'bad': 'maroon'}
df_colors = df_classes.applymap(lambda x: f'background-color: {colors.get(x, None)}')

table = df.style.hide_index() \
                .apply(lambda x: pd.DataFrame(df_colors.values, columns=x.columns), axis=None) \
                .set_properties(subset=['Antenna'], **{'font-weight': 'bold', 'border-right': "3pt solid black"}) \
                .set_properties(subset=df.columns[1:], **{'border-left': "1pt solid black"}) \
                .set_properties(**{'text-align': 'center', 'color': 'white'})

Table 1: Complete summary of per-antenna classifications¶

This table summarizes the results of the various classifications schemes detailed above. As before, green is good, yellow is suspect, and red is bad. The color for each antenna (first column) is the final summary of all other classifications. Antennas missing from redcal $\chi^2$ were excluded redundant-baseline calibration, either because they were flagged by ant_metrics or the even/odd zeros check, or because they would add unwanted extra degeneracies.

In [40]:
HTML(table.render())
Out[40]:
Antenna Dead? Low Correlation Cross-Polarized Even/Odd Zeros Autocorr Power Autocorr Slope RFI in Autos Autocorr Shape Redcal chi^2
3e No 0.036 0.76 0 0.69 0.51 0.027 0.13 -
3n No 0.88 0.76 0 7.7 0.14 0.0023 0.023 7.26
4e No 0.88 0.27 0 28 0.071 0.027 0.027 17.6
4n No 0.88 0.27 0 11 0.19 0.0049 0.029 8.26
5e No 0.88 0.26 0 8.7 0.024 0.0026 0.038 7.38
5n No 0.87 0.26 0 9.2 0.12 0.0033 0.024 7.68
7e No 0.86 0.28 1 7 0.018 0.0026 0.033 10.5
7n No 0.85 0.28 1 3.6 0.084 0.0029 0.032 8.24
8e No 0.85 0.3 0 10 0.043 0.0013 0.037 10.6
8n No 0.85 0.3 0 9 0.21 0.002 0.018 10.5
9e No 0.74 0.38 0 1.1 0.22 0.0098 0.056 11.3
9n No 0.84 0.38 0 8.3 0.15 0.0016 0.022 10.2
10e No 0.84 0.32 0 7.9 0.057 0.0039 0.039 12.5
10n No 0.84 0.32 0 11 0.14 0.0016 0.023 9.69
15e No 0.038 0.75 1 0.8 0.52 0.016 0.13 -
15n No 0.88 0.75 0 6.9 0.15 0.00033 0.033 9.12
16e No 0.036 0.74 1 0.69 0.52 0.017 0.13 -
16n No 0.88 0.74 0 7.8 0.2 0.00033 0.017 7.48
17e No 0.88 0.27 0 8.4 0.071 0 0.022 7.8
17n No 0.87 0.27 0 8.6 0.18 0.0016 0.034 7.9
18e No 0.031 0.61 0 0.7 0.55 0.029 0.13 -
18n No 0.72 0.61 0 8.6 -0.088 0.38 0.25 3.61
19e No 0.86 0.28 0 8 0.14 0.0078 0.022 8.28
19n No 0.86 0.28 0 8.2 0.14 0.00033 0.019 6.65
20e No 0.85 0.3 0 3.3 -0.038 0.0016 0.047 19.4
20n No 0.85 0.3 0 16 0.14 0.00033 0.021 10.4
21e No 0.84 0.31 0 8.9 0.21 0.0013 0.039 15
21n No 0.82 0.31 0 3 0.14 0.00033 0.035 15.1
22e No 0.82 0.35 0 22 0.12 0.00098 0.012 8.59
22n No 0.81 0.35 0 22 0.2 0.0023 0.014 7.33
27e No 0.038 0.0032 1 0.69 0.5 0.08 0.12 -
27n No 0.042 0.0032 0 0.65 0.55 0.056 0.11 -
28e No 0.57 0.36 0 14 0.7 0.0039 0.15 10.8
28n No 0.29 0.36 0 8.7 0.69 0.3 0.29 2.38
29e No 0.031 0.0071 1 0.75 0.52 0.031 0.13 -
29n No 0.039 0.0071 0 0.72 0.56 0.016 0.12 -
30e No 0.88 0.26 0 12 0.13 0.00033 0.026 8.3
30n No 0.87 0.26 0 8 0.16 0.00098 0.02 7.57
31e No 0.88 0.27 0 6.8 -0.034 0 0.043 10.8
31n No 0.87 0.27 0 6.6 0.16 0.00098 0.017 7.89
32e No 0.81 0.18 0 7.6 0.66 0.00033 0.2 31.8
32n No 0.82 0.18 0 5.3 0.7 0.00065 0.17 25.9
34e No 0.048 0.63 0 2.9 0.58 0.033 0.14 -
34n No 0.83 0.63 0 24 0.23 0 0.019 7.62
35e No 0.83 0.36 0 31 0.079 0.00098 0.016 9.42
35n No 0.81 0.36 0 16 0.26 0.00065 0.026 8.32
36e No 0.9 0.21 0 8.2 -0.31 0.002 0.11 8.25
36n No 0.88 0.21 0 8.1 -0.15 0.0036 0.093 6.85
37e No 0.9 0.21 0 16 0.014 0.00033 0.051 9.02
37n No 0.89 0.21 0 7.4 0.17 0.0016 0.04 7.14
38e No 0.9 0.21 0 8.4 0.021 0.00065 0.052 8.37
38n No 0.89 0.21 0 8.1 0.091 0.00033 0.04 5.87
40e No 0.89 0.22 0 8.7 0.034 0.0013 0.033 20
40n No 0.88 0.22 0 8.1 0.15 0.00098 0.03 5.35
41e No 0.89 0.23 0 10 0.011 0.0075 0.035 5.27
41n No 0.88 0.23 0 9 0.16 0.0013 0.028 7.73
42e No 0.033 0.0031 0 0.65 0.55 0.015 0.13 -
42n No 0.03 0.0031 1 0.58 0.59 0.021 0.12 -
43e No 0.88 0.26 0 19 0.054 0.002 0.032 7.45
43n No 0.87 0.26 0 8 0.25 0.00065 0.031 9.1
44e No 0.88 0.27 0 15 0.084 0.00033 0.02 8.28
44n No 0.87 0.27 0 9 0.16 0 0.022 7.09
45e No 0.87 0.27 0 8.5 0.022 0.00065 0.031 10.1
45n No 0.86 0.27 0 8.3 0.29 0 0.04 7.95
46e No 0.86 0.31 0 6.2 0.072 0.00098 0.032 24.2
46n No 0.86 0.31 0 36 0.096 0 0.029 11.3
47e No 0.042 0.59 0 3.1 0.55 0.03 0.13 -
47n No 0.82 0.59 0 16 0.3 0.00033 0.038 7.67
48e No 0.83 0.35 0 25 0.19 0.0029 0.028 10.3
48n No 0.82 0.35 0 34 0.28 0 0.03 6.94
49e No 0.81 0.35 0 12 0.2 0.0016 0.032 10.3
49n No 0.82 0.35 0 23 0.25 0.00098 0.024 8.61
50e No 0.87 0.22 0 8.9 0.58 0 0.13 12.9
50n No 0.87 0.22 0 7.4 0.33 0.0026 0.076 6.79
51e No 0.06 0.73 0 0.35 0.98 0.21 0.22 -
51n No 0.89 0.73 0 8.5 0.13 0.00065 0.044 5.79
52e No 0.9 0.21 0 10 -0.27 0.0016 0.11 8.57
52n No 0.89 0.21 0 7.8 -0.13 0.00098 0.089 6.59
53e No 0.9 0.21 0 9 0.019 0.0036 0.043 7.73
53n No 0.89 0.21 0 8.5 -0.0063 0.00033 0.066 3.87
54e No 0.034 0.0027 2.9E+02 0.69 0.52 0.05 0.13 -
54n No 0.03 0.0027 2.9E+02 0.62 0.58 0.02 0.12 -
55e No 0.029 0.0067 0 0.68 0.53 0.032 0.13 -
55n No 0.034 0.0067 1 0.63 0.6 0.074 0.12 -
56e No 0.89 0.72 0 8.1 0.098 0.00033 0.029 11.5
56n No 0.042 0.72 1 0.61 0.61 0.016 0.13 -
57e No 0.64 0.34 0 1 0.62 0.035 0.15 5.03
57n No 0.88 0.34 0 7.9 0.29 0.00098 0.054 8.9
58e No 0.039 0.0011 0 0.7 0.49 0.034 0.13 -
58n No 0.038 0.0011 0 0.64 0.56 0.019 0.12 -
59e No 0.073 0.67 0 0.7 0.54 0.018 0.13 -
59n No 0.87 0.67 0 6.5 0.25 0.00033 0.034 9.54
60e No 0.87 0.62 0 9.9 0.18 0.00065 0.031 12.8
60n No 0.17 0.62 1 0.63 0.56 0.076 0.12 -
61e No 0.83 0.29 0 10 0.26 0 0.046 8.98
61n No 0.82 0.29 0 8 0.31 0.00065 0.039 7.47
62e No 0.8 0.32 0 9.3 0.22 0.0033 0.041 7.85
62n No 0.83 0.32 0 29 0.17 0 0.024 6.44
63e No 0.82 0.59 0 19 0.13 0.0078 0.036 11.4
63n No 0.047 0.59 0 2.9 0.58 0.079 0.12 -
64e No 0.82 0.34 0 18 0.17 0.0016 0.036 13.2
64n No 0.8 0.34 0 11 0.29 0.00033 0.036 11.5
65e No 0.88 0.25 0 7.8 0.021 0.00065 0.054 12.3
65n No 0.87 0.25 0 6.8 0.062 0.0036 0.043 6.64
66e No 0.89 0.23 1 4.8 -0.031 0.00065 0.054 8.03
66n No 0.88 0.23 0 5.3 0.057 0.0016 0.045 6.35
67e No 0.9 0.21 0 6.1 0.078 0.00065 0.036 6.07
67n No 0.88 0.21 0 6.6 0.2 0.002 0.028 6.17
68e No 0.9 0.76 0 7.6 0.064 0.00033 0.044 9.31
68n No 0.044 0.76 1 0.27 1 0.19 0.22 -
69e No 0.9 0.21 0 8.2 0.053 0.0023 0.029 9
69n No 0.89 0.21 0 7.4 0.19 0.002 0.02 5.76
70e No 0.9 0.21 0 9.9 0.078 0.00033 0.031 7.62
70n No 0.89 0.21 0 9.4 0.21 0.00033 0.026 5.82
71e No 0.9 0.22 0 7.7 -0.27 0 0.11 10.9
71n No 0.89 0.22 0 6.9 0.11 0.002 0.03 7.6
72e No 0.89 0.72 0 7.7 0.21 0.00033 0.039 9.2
72n No 0.039 0.72 1 0.58 0.61 0.014 0.13 -
73e No 0.89 0.25 0 16 0.075 0.00033 0.023 6.47
73n No 0.88 0.25 0 6.3 0.099 0.00033 0.035 11.7
74e No 0.88 0.26 0 21 0.14 0 0.023 6.32
74n No 0.88 0.26 0 11 0.2 0.00033 0.029 8.32
77e No 0.85 0.32 0 24 0.1 0.00065 0.013 8.43
77n No 0.82 0.32 0 10 0.26 0.0068 0.037 6.69
78e No 0.68 0.34 0 12 1.1 0.0046 0.3 16.9
78n No 0.83 0.34 0 29 0.17 0 0.019 7.43
79e No 0.84 0.33 0 14 0.25 0.00033 0.039 9.63
79n No 0.85 0.33 0 22 0.24 0 0.022 7.72
80e No 0.83 0.62 0 46 0.086 0 0.034 10.6
80n No 0.055 0.62 0 2.9 0.61 0.037 0.13 -
81e No 0.87 0.64 0 9.2 0.03 0.0042 0.034 2.4
81n No 0.04 0.64 0 0.92 0.6 0.064 0.13 -
82e No 0.88 0.25 0 8.3 0.0069 0.00065 0.068 7.27
82n No 0.86 0.25 0 5.4 0.12 0.00065 0.029 5.3
83e No 0.88 0.23 0 8.7 0.031 0.00033 0.032 6.12
83n No 0.87 0.23 0 8.3 0.18 0.00065 0.028 5.64
84e No 0.58 0.37 0 0.32 0.8 0.11 0.22 1.73
84n No 0.04 0.37 1 0.28 0.92 0.11 0.23 -
85e No 0.89 0.21 0 7.8 -0.042 0.00033 0.045 7.71
85n No 0.88 0.21 0 6.5 0.094 0.00098 0.037 5.08
86e No 0.89 0.2 0 5.5 -0.0096 0.0016 0.047 11.4
86n No 0.88 0.2 0 5.9 0.078 0.0026 0.037 7.32
87e No 0.9 0.21 0 10 -0.19 0.0029 0.087 7.33
87n No 0.89 0.21 0 9 -0.16 0.0013 0.11 6.24
88e No 0.89 0.21 0 8.4 0.087 0.0013 0.031 7.62
88n No 0.89 0.21 0 7.3 0.067 0.0013 0.036 6.9
89e No 0.9 0.22 0 8.5 -0.025 0 0.047 11.2
89n No 0.88 0.22 0 7.3 0.096 0.00033 0.036 10.8
90e No 0.89 0.21 0 5.5 0.02 0.0059 0.034 17.9
90n No 0.88 0.21 0 6.6 0.23 0.0046 0.029 15.9
91e No 0.88 0.23 0 8.2 0.032 0.00033 0.039 8.84
91n No 0.88 0.23 0 8.3 0.14 0.00098 0.023 12.3
92e No 0.47 0.078 0 9.8 1.4 0.0049 0.33 11.8
92n No 0.41 0.078 0 9.3 1.7 0.0013 0.37 6.62
93e No 0.87 0.27 0 5.2 0.13 0.0072 0.036 10.4
93n No 0.87 0.27 0 8.3 0.23 0.00098 0.029 8.18
94e No 0.034 0.003 1 0.66 0.56 0.02 0.14 -
94n No 0.029 0.003 1 0.66 0.58 0.02 0.12 -
95e No 0.85 0.31 0 17 0.22 0 0.029 7.13
95n No 0.85 0.31 0 26 0.22 0.00033 0.013 6.33
96e No 0.033 0.0026 0 3.1 0.56 0.036 0.14 -
96n No 0.043 0.0026 0 2.8 0.6 0.028 0.12 -
97e No 0.84 0.34 0 18 0.15 0.0013 0.019 11.2
97n No 0.78 0.34 0 5.3 0.41 0.018 0.069 12.4
98e No 0.85 0.28 0 8.9 -0.0043 0.00033 0.041 1.91
98n No 0.85 0.28 0 9.3 0.15 0.0049 0.066 5.69
99e No 0.87 0.27 0 7.1 0.055 0.0068 0.041 6.95
99n No 0.86 0.27 0 7.7 0.12 0.0052 0.026 3.38
100e Yes 1.5E+03 0 0 0 INF -
100n Yes 1.5E+03 0 0 0 INF -
101e No 0.88 0.23 0 9.6 -0.28 0 0.11 6.99
101n No 0.87 0.23 0 6.8 -0.2 0.0023 0.11 6
102e No 0.89 0.22 0 15 0.096 0.00098 0.018 7.28
102n No 0.87 0.22 0 4.3 0.2 0.0039 0.027 5.6
103e No 0.88 0.26 0 56 0.066 0.024 0.055 7.46
103n No 0.88 0.26 0 9.9 -0.081 0.00065 0.091 5.32
104e No 0.87 0.22 0 1.5 -0.0013 0 0.059 13.4
104n No 0.88 0.22 0 1.5 1.9 0.011 0.47 6.93
105e No 0.9 0.21 0 8.9 0.054 0 0.037 12.2
105n No 0.88 0.21 0 7.3 0.12 0.00033 0.029 7.49
106e No 0.89 0.21 0 5.4 -0.032 0.0055 0.041 19.4
106n No 0.88 0.21 0 7 0.23 0.00033 0.023 6.98
107e No 0.9 0.21 0 11 0.16 0.002 0.043 24.5
107n No 0.89 0.21 0 11 0.16 0.0046 0.043 9.65
108e No 0.042 0.32 0 0.7 0.52 0.057 0.13 -
108n No 0.59 0.32 0 11 0.51 0.00065 0.13 15.2
109e No 0.026 0.0037 0 0.69 0.51 0.018 0.13 -
109n No 0.029 0.0037 0 0.68 0.57 0.055 0.12 -
110e No 0.028 -0.00066 1 0.3 1.1 0.039 0.24 -
110n No 0.029 -0.00066 1 0.29 1 0.048 0.21 -
111e No 0.87 0.55 0 8 0.024 0.00065 0.036 8.49
111n No 0.042 0.55 1 0.65 0.56 0.049 0.12 -
112e No 0.86 0.28 0 8.7 0.088 0.00033 0.034 9.81
112n No 0.87 0.28 0 9 0.17 0.00065 0.028 7.84
113e No 0.039 0.0022 0 3.2 0.59 0.029 0.14 -
113n No 0.03 0.0022 0 2.9 0.6 0.024 0.13 -
114e No 0.85 0.32 0 17 0.21 0.0016 0.031 8.95
114n No 0.85 0.32 0 21 0.23 0.0072 0.03 7.5
115e No 0.84 0.34 0 31 0.1 0.0013 0.015 9.84
115n No 0.84 0.34 0 39 0.16 0.0013 0.025 9.92
116e No 0.84 0.31 0 9.8 0.058 0.0013 0.032 7.2
116n No 0.84 0.31 0 7.8 0.2 0.0016 0.031 3.34
117e No 0.028 0.005 1 0.68 0.56 0.025 0.13 -
117n No 0.035 0.005 0 0.58 0.63 0.091 0.13 -
118e No 0.87 0.27 0 8.9 0.078 0.00033 0.037 6.85
118n No 0.86 0.27 0 7.7 0.16 0.00065 0.044 5.9
119e Yes 1.5E+03 0 0 0 INF -
119n Yes 1.5E+03 0 0 0 INF -
120e No 0.87 0.25 0 4.5 0.0097 0.00065 0.064 8.18
120n No 0.87 0.25 0 39 0.096 0 0.039 5.57
121e No 0.89 0.23 0 13 0.18 0.0023 0.055 7.97
121n No 0.88 0.23 0 8.2 -0.045 0.0013 0.08 6.2
122e No 0.9 0.21 0 9.7 -0.31 0.0013 0.13 17.3
122n No 0.88 0.21 0 7.2 -0.028 0.00033 0.072 6.73
123e No 0.9 0.2 0 7.5 -0.26 0 0.11 17.6
123n No 0.89 0.2 0 7 -0.2 0.0013 0.11 6.38
124e No 0.9 0.2 0 9 0.052 0.00033 0.029 16.2
124n No 0.89 0.2 0 7.6 0.22 0.00033 0.024 6.33
125e No 0.9 0.21 0 10 0.0045 0 0.038 23.6
125n No 0.89 0.21 0 7.1 0.14 0.00033 0.024 8.2
126e No 0.82 0.21 0 9.4 0.97 0 0.27 18.2
126n No 0.88 0.21 0 6.7 0.023 0.002 0.047 10.7
127e No 0.89 0.24 0 8.8 0.085 0.002 0.028 12.9
127n No 0.89 0.24 0 8.5 0.14 0.0016 0.026 8.24
128e No 0.034 0.0044 1 0.68 0.5 0.0081 0.13 -
128n No 0.026 0.0044 0 0.64 0.55 0.017 0.12 -
129e No 0.88 0.26 0 8.8 0.064 0.00065 0.031 17.8
129n No 0.88 0.26 0 8.2 0.15 0.0046 0.017 9.2
130e No 0.87 0.26 0 9 0.12 0.00065 0.03 8.77
130n No 0.87 0.26 0 8.4 0.2 0.00033 0.027 7.34
131e No 0.86 0.48 0 51 0.083 0 0.042 20
131n No 0.36 0.48 1 2.8 0.6 0 0.12 1.65
132e No 0.86 0.3 0 19 0.16 0.00033 0.022 9.69
132n No 0.86 0.3 0 14 0.27 0.00065 0.031 7.8
133e No 0.046 0.58 0 3.3 0.58 0.049 0.14 -
133n No 0.85 0.58 0 14 0.26 0.0059 0.024 8.7
135e No 0.84 0.34 0 9.3 0.054 0.016 0.033 7.36
135n No 0.84 0.34 0 14 0.18 0.0098 0.024 6.85
136e No 0.79 0.32 0 1.8 0.2 0.011 0.064 8.22
136n No 0.83 0.32 0 4.2 0.16 0.0013 0.04 3.21
137e No 0.85 0.3 0 9.3 0.11 0.0036 0.028 7.89
137n No 0.85 0.3 0 13 0.17 0 0.021 5.91
138e Yes 1.5E+03 0 0 0 INF -
138n Yes 1.5E+03 0 0 0 INF -
139e No 0.87 0.27 0 31 0.12 0 0.033 6.46
139n No 0.86 0.27 0 17 0.23 0.00033 0.027 3.38
140e No 0.88 0.24 0 12 0.075 0.0013 0.033 9.26
140n No 0.88 0.24 0 20 0.13 0.00033 0.023 5.44
141e No 0.89 0.23 0 10 0.089 0 0.021 11.2
141n No 0.88 0.23 0 25 0.16 0.00033 0.013 3.55
142e No 0.9 0.61 0 11 0.091 0.00065 0.047 16.3
142n No 0.067 0.61 0 0.64 0.56 0.039 0.12 -
143e No 0.87 0.23 0 1.9 0.18 0 0.04 17.7
143n No 0.89 0.23 0 9.1 0.15 0.00033 0.023 6.43
144e No 0.9 0.2 0 9.6 0.06 0.00065 0.033 23.3
144n No 0.89 0.2 0 7.5 0.091 0.00065 0.034 6.9
145e No 0.9 0.22 0 9.6 0.033 0.0016 0.028 27.1
145n No 0.87 0.22 0 2.2 0.17 0.016 0.028 9.88
146e No 0.041 0.65 1 3.2 0.56 0.022 0.14 -
146n No 0.88 0.65 0 21 0.22 0.00065 0.021 10.7
147e Yes 1.5E+03 0 0 0 INF -
147n Yes 1.5E+03 0 0 0 INF -
148e Yes 1.5E+03 0 0 0 INF -
148n Yes 1.5E+03 0 0 0 INF -
149e Yes 1.5E+03 0 0 0 INF -
149n Yes 1.5E+03 0 0 0 INF -
150e No 0.87 0.29 0 31 0.063 0 0.022 7.8
150n No 0.87 0.29 0 26 0.19 0.00033 0.022 7.81
155e No 0.037 0.55 0 0.74 0.5 0.029 0.13 -
155n No 0.83 0.55 0 13 0.15 0.016 0.022 6.69
156e No 0.82 0.57 0 3.3 0.02 0.012 0.038 14.2
156n No 0.042 0.57 0 0.67 0.54 0.023 0.12 -
157e No 0.85 0.31 0 9.4 0.049 0.0059 0.035 12.9
157n No 0.84 0.31 0 7.9 0.18 0.0023 0.028 10
158e No 0.86 0.3 0 10 0.061 0.0072 0.03 14.1
158n No 0.86 0.3 0 12 0.22 0.0033 0.027 7.18
159e No 0.85 0.28 0 14 0.2 0.00033 0.031 13.1
159n No 0.74 0.28 0 14 1.1 0.0049 0.26 4.39
160e No 0.88 0.25 0 9.7 0.012 0.0026 0.031 20.5
160n No 0.87 0.25 0 11 0.24 0.0016 0.025 25.9
161e No 0.88 0.23 0 9.4 0.1 0.00033 0.023 6.38
161n No 0.81 0.23 0 13 0.92 0.00065 0.22 35.5
162e No 0.88 0.26 0 40 0.21 0 0.045 4.75
162n No 0.87 0.26 0 31 0.16 0.00065 0.02 4.68
163e No 0.9 0.22 0 9.5 -0.0036 0.002 0.033 38.6
163n No 0.88 0.22 0 8.1 0.081 0.002 0.035 -3.79E-17
164e No 0.89 0.21 0 6 0.072 0.00033 0.025 22.9
164n No 0.88 0.21 0 9.4 0.13 0.0013 0.029 137
165e No 0.81 0.21 0 5.4 0.89 0.00098 0.24 14.6
165n No 0.89 0.21 0 7.9 0.1 0.00098 0.029 95.2
166e No 0.9 0.24 0 8.2 -0.0019 0.0029 0.036 43.8
166n No 0.88 0.24 0 35 0.071 0 0.033 32.9
167e No 0.89 0.23 0 16 0.062 0.00033 0.03 24.1
167n No 0.88 0.23 0 3.5 0.15 0.0013 0.027 10.5
168e No 0.89 0.23 0 8.8 0.084 0 0.029 27.2
168n No 0.89 0.23 0 10 0.15 0.00033 0.024 12.2
169e No 0.89 0.27 0 12 0.038 0.0016 0.024 33.3
169n No 0.87 0.27 0 15 0.52 0.00033 0.09 7.71
170e No 0.044 0.7 0 0.66 0.55 0.019 0.13 -
170n No 0.88 0.7 0 12 0.22 0.00065 0.024 7.98
179e No 0.85 0.29 0 6.5 0.13 0.00098 0.032 16.1
179n No 0.84 0.29 0 5.1 0.18 0.0016 0.026 7.97
180e No 0.86 0.62 0 9.7 0.13 0.019 0.036 15.9
180n No 0.06 0.62 0 0.61 0.6 0.052 0.12 -
181e No 0.87 0.26 0 9.2 0.067 0.00065 0.029 20.4
181n No 0.86 0.26 0 8.2 0.2 0.00098 0.022 34.4
182e No 0.89 0.29 0 26 0.097 0.00065 0.024 35.4
182n No 0.86 0.29 0 52 0.079 0 0.05 29.4
183e No 0.88 0.22 0 6.8 -0.0042 0.0013 0.044 2.74E-17
183n No 0.85 0.22 0 2.6 0.16 0.0078 0.04 -6.16E-17
184e No 0.9 0.21 0 9.3 0.057 0.0016 0.025 45.1
184n No 0.88 0.21 0 3.6 0.13 0.00033 0.031 52.4
185e No 0.73 0.26 0 1.3 0.63 0.01 0.16 45.9
185n No 0.87 0.26 0 3.1 0.11 0.00065 0.035 837
186e No 0.9 0.22 0 15 0.081 0.0016 0.02 15.1
186n No 0.89 0.22 0 19 0.16 0 0.015 98.2
187e No 0.89 0.2 0 3.1 0.028 0.0085 0.042 20.5
187n No 0.89 0.2 0 5.1 0.13 0.00033 0.03 12.8
189e No 0.033 0.43 0 0.77 0.47 0.018 0.12 -
189n No 0.6 0.43 0 11 0.47 0.0026 0.1 16.1
190e No 0.89 0.26 0 11 0.12 0.00065 0.022 51.5
190n No 0.88 0.26 0 23 0.33 0 0.046 8.83
191e No 0.88 0.24 0 6.7 0.039 0.00033 0.026 37.4
191n No 0.88 0.24 0 10 0.24 0.00098 0.028 9.07
200e No 0.048 0.25 0 3.1 0.58 0.061 0.14 -
200n No 0.36 0.25 0 32 1.3 0.00065 0.31 5.48
201e No 0.85 0.33 0 78 0.029 0.0033 0.093 17.7
201n No 0.84 0.33 0 68 0.061 0 0.08 26.7
202e No 0.88 0.27 0 25 0.17 0.00033 0.029 48
202n No 0.85 0.27 0 9.5 0.3 0.013 0.038 38.6
203e No 0.038 0.0028 0 13 0.61 0.066 0.14 -
203n No 0.048 0.0028 0 12 0.65 0.092 0.13 -
205e No 0.88 0.23 0 24 0.14 0 0.039 24
205n No 0.86 0.23 0 12 0.26 0.054 0.042 186
206e No 0.89 0.23 0 28 0.11 0.00033 0.027 103
206n No 0.88 0.23 0 17 0.22 0 0.027 3.93E-17
207e No 0.88 0.23 0 30 0.18 0.00033 0.04 18.4
207n No 0.87 0.23 0 22 0.29 0 0.044 10.4
208e No 0.036 -0.00039 0 0.82 0.11 0.19 0.13 -
208n No 0.035 -0.00039 0 0.57 0.029 0.14 0.15 -
209e No 0.043 -0.0004 0 0.82 0.11 0.044 0.11 -
209n No 0.042 -0.0004 0 0.79 0.075 0.042 0.12 -
210e No 0.89 0.23 0 5 -0.39 0.00033 0.15 51.9
210n No 0.87 0.23 0 3.5 -0.042 0.00098 0.092 12.8
211e No 0.88 0.29 0 40 0.14 0 0.025 6.49
211n No 0.87 0.29 0 52 0.12 0 0.049 11
219e No 0.82 0.36 0 90 0.0058 0.033 0.11 10.2
219n No 0.83 0.36 0 75 0.031 0 0.094 29.3
220e No 0.87 0.27 0 21 0.18 0.0049 0.019 21.6
220n No 0.85 0.27 0 20 0.19 0.00033 0.017 46.9
221e No 0.85 0.26 0 10 0.28 0.002 0.049 55
221n No 0.86 0.26 0 19 0.25 0.00065 0.027 42.6
222e No 0.88 0.24 0 25 0.22 0.00033 0.036 126
222n No 0.86 0.24 0 21 0.25 0 0.03 78.3
223e No 0.88 0.23 0 14 0.13 0.00098 0.031 72.8
223n No 0.87 0.23 0 29 0.12 0 0.038 183
224e No 0.86 0.29 0 83 0.014 0 0.099 179
224n No 0.85 0.29 0 79 0.037 0 0.097 162
225e No 0.88 0.64 0 57 0.049 0 0.059 167
225n No 0.24 0.64 0 3 0.59 0.03 0.12 1.19
226e No 0.89 0.28 0 51 0.051 0 0.047 22.2
226n No 0.84 0.28 0 61 0.3 0 0.061 5.34
227e No 0.87 0.24 0 41 0.2 0.00033 0.042 23.7
227n No 0.87 0.24 0 51 0.12 0 0.05 8.65
228e No 0.87 0.25 0 30 0.34 0.00033 0.081 38
228n No 0.86 0.25 0 52 0.13 0 0.054 11.2
229e No 0.87 0.27 0 62 0.061 0 0.063 38.3
229n No 0.87 0.27 0 60 0.063 0 0.067 12.1
237e No 0.82 0.3 0 7.9 0.26 0.0036 0.046 15.5
237n No 0.83 0.3 0 16 0.26 0.00065 0.042 59.3
238e No 0.87 0.28 0 28 0.11 0.00033 0.029 24.2
238n No 0.85 0.28 0 26 0.25 0 0.023 54.3
239e No 0.87 0.27 0 24 0.14 0.00033 0.024 49.6
239n No 0.86 0.27 0 33 0.16 0 0.023 40.2
240e No 0.79 0.25 0 52 0.61 0 0.15 33.3
240n No 0.69 0.25 0 44 1.5 0.00098 0.32 22.2
241e No 0.88 0.25 0 18 0.13 0.00065 0.037 92.7
241n No 0.84 0.25 0 8.3 0.38 0.00065 0.059 1.98E-17
242e No 0.62 0.43 0 19 2.1 0.0013 0.48 37.3
242n No 0.87 0.43 0 34 0.15 0 0.03 -4.2E-17
243e No 0.65 0.39 0 25 2.1 0.0046 0.48 50.2
243n No 0.87 0.39 0 15 0.25 0.00098 0.041 12.2
244e No 0.82 0.27 0 5.2 0.39 0.02 0.083 16.9
244n No 0.88 0.27 0 22 0.28 0.00033 0.032 7.92
245e No 0.89 0.25 0 44 0.1 0.00065 0.035 4.8
245n No 0.88 0.25 0 24 0.29 0.00065 0.032 7.1
246e No 0.6 0.14 0 46 0.36 0 0.072 9.03
246n No 0.58 0.14 0 53 0.27 0 0.059 8.99
261e No 0.89 0.25 0 56 0.049 0.00033 0.058 28.9
261n No 0.87 0.25 0 49 0.13 0 0.047 8.76
262e No 0.042 0.0084 0 0.86 0.14 0.022 0.1 -
262n No 0.032 0.0084 0 0.73 0.089 0.035 0.12 -
320e No 0.89 0.75 0 9.9 0.12 0.0072 0.033 -
320n No 0.056 0.75 0 1.6 0.58 0.11 0.12 -
324e No 0.88 0.24 0 30 0.21 0.00098 0.043 -
324n No 0.87 0.24 0 33 0.2 0.00098 0.031 -
325e No 0.9 0.2 0 30 0.093 0.0029 0.016 -
325n No 0.88 0.2 0 16 0.28 0.0036 0.03 -
329e No 0.78 0.37 0 17 0.25 0.016 0.04 -
329n No 0.79 0.37 0 18 0.26 0.0046 0.027 -
333e No 0.72 0.44 0 12 0.26 0.011 0.047 -
333n No 0.75 0.44 0 15 0.34 0.0029 0.044 -
In [41]:
# Save antenna classification table as a csv
if SAVE_RESULTS:
    for ind, col in zip(np.arange(len(df.columns), 0, -1), df_classes.columns[::-1]):
        df.insert(int(ind), col + ' Class', df_classes[col])
    df.to_csv(ANTCLASS_FILE)    
In [42]:
print('Final Ant-Pol Classification:\n\n', final_class)
Final Ant-Pol Classification:

 Jee:
----------
good (106 antpols):
5, 7, 8, 10, 17, 19, 21, 22, 30, 31, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 53, 56, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 77, 79, 81, 83, 85, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 102, 105, 106, 107, 111, 112, 114, 116, 118, 121, 124, 125, 127, 129, 130, 132, 137, 140, 141, 142, 144, 145, 157, 158, 159, 160, 161, 163, 164, 166, 167, 168, 169, 179, 181, 182, 183, 184, 186, 190, 191, 202, 205, 206, 207, 220, 221, 222, 223, 237, 238, 239, 241, 320, 324, 325

suspect (32 antpols):
9, 20, 35, 36, 52, 66, 71, 80, 82, 87, 101, 104, 115, 120, 123, 135, 136, 139, 143, 150, 156, 162, 180, 187, 211, 227, 228, 244, 245, 246, 329, 333

bad (63 antpols):
3, 4, 15, 16, 18, 27, 28, 29, 32, 34, 42, 47, 50, 51, 54, 55, 57, 58, 59, 78, 84, 92, 94, 96, 100, 103, 108, 109, 110, 113, 117, 119, 122, 126, 128, 131, 133, 138, 146, 147, 148, 149, 155, 165, 170, 185, 189, 200, 201, 203, 208, 209, 210, 219, 224, 225, 226, 229, 240, 242, 243, 261, 262


Jnn:
----------
good (106 antpols):
3, 4, 5, 8, 9, 10, 15, 16, 17, 19, 20, 22, 30, 31, 34, 35, 37, 38, 40, 41, 43, 44, 45, 47, 49, 51, 57, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 99, 105, 106, 107, 112, 114, 116, 118, 124, 125, 126, 127, 129, 130, 132, 133, 135, 137, 139, 140, 141, 143, 144, 146, 150, 157, 158, 160, 163, 164, 165, 168, 170, 179, 181, 186, 187, 190, 191, 206, 207, 220, 221, 222, 223, 237, 238, 241, 243, 244, 245, 325, 329, 333

suspect (37 antpols):
7, 21, 36, 46, 48, 50, 52, 53, 87, 97, 98, 101, 102, 103, 115, 120, 121, 122, 123, 131, 136, 145, 155, 162, 166, 167, 169, 183, 184, 185, 189, 202, 210, 239, 242, 261, 324

bad (58 antpols):
18, 27, 28, 29, 32, 42, 54, 55, 56, 58, 60, 63, 68, 72, 80, 81, 84, 92, 94, 96, 100, 104, 108, 109, 110, 111, 113, 117, 119, 128, 138, 142, 147, 148, 149, 156, 159, 161, 180, 182, 200, 201, 203, 205, 208, 209, 211, 219, 224, 225, 226, 227, 228, 229, 240, 246, 262, 320

Save calibration solutions¶

In [43]:
# update flags in omnical gains and visibility solutions
for ant in cal['gf_omnical']:
    cal['gf_omnical'][ant] |= rfi_flags
for bl in cal['vf_omnical']:
    cal['vf_omnical'][bl] |= rfi_flags
In [44]:
if SAVE_RESULTS:
    hd_writer = io.HERAData(SUM_FILE)
    redcal._redcal_run_write_results(cal, hd_writer, None, OMNICAL_FILE, OMNIVIS_FILE, None, '', vispols=['ee', 'nn'],
                                     clobber=True, verbose=True, add_to_history='Producted by file_inspect notebook.')
    del hd_writer
    malloc_trim()
Now saving omnical gains to /mnt/sn1/2459925/zen.2459925.41988.sum.omni.calfits
Now saving omnical visibilities to /mnt/sn1/2459925/zen.2459925.41988.sum.omni_vis.uvh5

TODO: Perform nucal¶

Metadata¶

In [45]:
from hera_cal import __version__
print('hera_cal:', __version__)
from hera_qm import __version__
print('hera_qm:', __version__)
hera_cal: 3.1.5.dev171+gc8e6162
hera_qm: 2.0.5.dev11+g87299d5
In [46]:
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 10.83 minutes.