Josh Dillon, Last Revised January 2022
This notebook examines an individual antenna's performance over a whole season. This notebook parses information from each nightly rtp_summary
notebook (as saved to .csvs) and builds a table describing antenna performance. It also reproduces per-antenna plots from each auto_metrics
notebook pertinent to the specific antenna.
import os
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# If you want to run this notebook locally, copy the output of the next cell into the next line of this cell.
# antenna = "004"
# csv_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/_rtp_summary_'
# auto_metrics_folder = '/lustre/aoc/projects/hera/H5C/H5C_Notebooks/auto_metrics_inspect'
# os.environ["ANTENNA"] = antenna
# os.environ["CSV_FOLDER"] = csv_folder
# os.environ["AUTO_METRICS_FOLDER"] = auto_metrics_folder
# Use environment variables to figure out path to the csvs and auto_metrics
antenna = str(int(os.environ["ANTENNA"]))
csv_folder = os.environ["CSV_FOLDER"]
auto_metrics_folder = os.environ["AUTO_METRICS_FOLDER"]
print(f'antenna = "{antenna}"')
print(f'csv_folder = "{csv_folder}"')
print(f'auto_metrics_folder = "{auto_metrics_folder}"')
antenna = "152" csv_folder = "/home/obs/src/H6C_Notebooks/_rtp_summary_" auto_metrics_folder = "/home/obs/src/H6C_Notebooks/auto_metrics_inspect"
display(HTML(f'<h1 style=font-size:50px><u>Antenna {antenna} Report</u><p></p></h1>'))
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 1000)
import glob
import re
from hera_notebook_templates.utils import status_colors, Antenna
# load csvs and auto_metrics htmls in reverse chronological order
csvs = sorted(glob.glob(os.path.join(csv_folder, 'rtp_summary_table*.csv')))[::-1]
print(f'Found {len(csvs)} csvs in {csv_folder}')
auto_metric_htmls = sorted(glob.glob(auto_metrics_folder + '/auto_metrics_inspect_*.html'))[::-1]
print(f'Found {len(auto_metric_htmls)} auto_metrics notebooks in {auto_metrics_folder}')
Found 138 csvs in /home/obs/src/H6C_Notebooks/_rtp_summary_ Found 138 auto_metrics notebooks in /home/obs/src/H6C_Notebooks/auto_metrics_inspect
# Per-season options
mean_round_modz_cut = 4
dead_cut = 0.4
crossed_cut = 0.0
def jd_to_summary_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/_rtp_summary_/rtp_summary_{jd}.html'
def jd_to_auto_metrics_url(jd):
return f'https://htmlpreview.github.io/?https://github.com/HERA-Team/H6C_Notebooks/blob/main/auto_metrics_inspect/auto_metrics_inspect_{jd}.html'
this_antenna = None
jds = []
# parse information about antennas and nodes
for csv in csvs:
df = pd.read_csv(csv)
for n in range(len(df)):
# Add this day to the antenna
row = df.loc[n]
if isinstance(row['Ant'], str) and '<a href' in row['Ant']:
antnum = int(row['Ant'].split('</a>')[0].split('>')[-1]) # it's a link, extract antnum
else:
antnum = int(row['Ant'])
if antnum != int(antenna):
continue
if np.issubdtype(type(row['Node']), np.integer):
row['Node'] = str(row['Node'])
if type(row['Node']) == str and row['Node'].isnumeric():
row['Node'] = 'N' + ('0' if len(row['Node']) == 1 else '') + row['Node']
if this_antenna is None:
this_antenna = Antenna(row['Ant'], row['Node'])
jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1]
jds.append(jd)
this_antenna.add_day(jd, row)
break
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/core/indexes/base.py:3802, in Index.get_loc(self, key, method, tolerance) 3801 try: -> 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/_libs/index.pyx:138, in pandas._libs.index.IndexEngine.get_loc() File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/_libs/index.pyx:165, in pandas._libs.index.IndexEngine.get_loc() File pandas/_libs/hashtable_class_helper.pxi:5745, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas/_libs/hashtable_class_helper.pxi:5753, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'ee Shape Modified Z-Score' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Cell In [8], line 26 24 jd = [int(s) for s in re.split('_|\.', csv) if s.isdigit()][-1] 25 jds.append(jd) ---> 26 this_antenna.add_day(jd, row) 27 break File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/hera_notebook_templates/utils.py:2879, in Antenna.add_day(self, jd, csv_row) 2877 if 'Auto Metrics Flags' in csv_row: 2878 self.auto_flags[jd] = csv_row['Auto Metrics Flags'] -> 2879 self.ee_shape_zs[jd] = csv_row['ee Shape Modified Z-Score'] 2880 self.nn_shape_zs[jd] = csv_row['nn Shape Modified Z-Score'] 2881 self.ee_power_zs[jd] = csv_row['ee Power Modified Z-Score'] File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/core/series.py:981, in Series.__getitem__(self, key) 978 return self._values[key] 980 elif key_is_scalar: --> 981 return self._get_value(key) 983 if is_hashable(key): 984 # Otherwise index.get_value will raise InvalidIndexError 985 try: 986 # For labels that don't resolve as scalars like tuples and frozensets File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/core/series.py:1089, in Series._get_value(self, label, takeable) 1086 return self._values[label] 1088 # Similar to Index.get_value, but we do not fall back to positional -> 1089 loc = self.index.get_loc(label) 1090 return self.index._get_values_for_loc(self, loc, label) File ~/mambaforge/envs/RTP/lib/python3.10/site-packages/pandas/core/indexes/base.py:3804, in Index.get_loc(self, key, method, tolerance) 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: -> 3804 raise KeyError(key) from err 3805 except TypeError: 3806 # If we have a listlike key, _check_indexing_error will raise 3807 # InvalidIndexError. Otherwise we fall through and re-raise 3808 # the TypeError. 3809 self._check_indexing_error(key) KeyError: 'ee Shape Modified Z-Score'
# build dataframe
to_show = {'JDs': [f'<a href="{jd_to_summary_url(jd)}" target="_blank">{jd}</a>' for jd in jds]}
to_show['A Priori Status'] = [this_antenna.statuses[jd] for jd in jds]
df = pd.DataFrame(to_show)
# create bar chart columns for flagging percentages:
bar_cols = {}
bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds]
bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds]
bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds]
bar_cols['Flag Fraction Before Redcal'] = [this_antenna.flags_before_redcal[jd] for jd in jds]
bar_cols['Flagged By Redcal chi^2 Fraction'] = [this_antenna.redcal_flags[jd] for jd in jds]
for col in bar_cols:
df[col] = bar_cols[col]
z_score_cols = {}
z_score_cols['ee Shape Modified Z-Score'] = [this_antenna.ee_shape_zs[jd] for jd in jds]
z_score_cols['nn Shape Modified Z-Score'] = [this_antenna.nn_shape_zs[jd] for jd in jds]
z_score_cols['ee Power Modified Z-Score'] = [this_antenna.ee_power_zs[jd] for jd in jds]
z_score_cols['nn Power Modified Z-Score'] = [this_antenna.nn_power_zs[jd] for jd in jds]
z_score_cols['ee Temporal Variability Modified Z-Score'] = [this_antenna.ee_temp_var_zs[jd] for jd in jds]
z_score_cols['nn Temporal Variability Modified Z-Score'] = [this_antenna.nn_temp_var_zs[jd] for jd in jds]
z_score_cols['ee Temporal Discontinuties Modified Z-Score'] = [this_antenna.ee_temp_discon_zs[jd] for jd in jds]
z_score_cols['nn Temporal Discontinuties Modified Z-Score'] = [this_antenna.nn_temp_discon_zs[jd] for jd in jds]
for col in z_score_cols:
df[col] = z_score_cols[col]
ant_metrics_cols = {}
ant_metrics_cols['Average Dead Ant Metric (Jee)'] = [this_antenna.Jee_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Dead Ant Metric (Jnn)'] = [this_antenna.Jnn_dead_metrics[jd] for jd in jds]
ant_metrics_cols['Average Crossed Ant Metric'] = [this_antenna.crossed_metrics[jd] for jd in jds]
for col in ant_metrics_cols:
df[col] = ant_metrics_cols[col]
redcal_cols = {}
redcal_cols['Median chi^2 Per Antenna (Jee)'] = [this_antenna.Jee_chisqs[jd] for jd in jds]
redcal_cols['Median chi^2 Per Antenna (Jnn)'] = [this_antenna.Jnn_chisqs[jd] for jd in jds]
for col in redcal_cols:
df[col] = redcal_cols[col]
# style dataframe
table = df.style.hide_index()\
.applymap(lambda val: f'background-color: {status_colors[val]}' if val in status_colors else '', subset=['A Priori Status']) \
.background_gradient(cmap='viridis', vmax=mean_round_modz_cut * 3, vmin=0, axis=None, subset=list(z_score_cols.keys())) \
.background_gradient(cmap='bwr_r', vmin=dead_cut-.25, vmax=dead_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.background_gradient(cmap='bwr_r', vmin=crossed_cut-.25, vmax=crossed_cut+.25, axis=0, subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.background_gradient(cmap='plasma', vmax=4, vmin=1, axis=None, subset=list(redcal_cols.keys())) \
.applymap(lambda val: 'font-weight: bold' if val < dead_cut else '', subset=list([col for col in ant_metrics_cols if 'dead' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val < crossed_cut else '', subset=list([col for col in ant_metrics_cols if 'crossed' in col.lower()])) \
.applymap(lambda val: 'font-weight: bold' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.applymap(lambda val: 'color: red' if val > mean_round_modz_cut else '', subset=list(z_score_cols.keys())) \
.bar(subset=list(bar_cols.keys()), vmin=0, vmax=1) \
.format({col: '{:,.4f}'.format for col in z_score_cols}) \
.format({col: '{:,.4f}'.format for col in ant_metrics_cols}) \
.format('{:,.2%}', na_rep='-', subset=list(bar_cols.keys())) \
.set_table_styles([dict(selector="th",props=[('max-width', f'70pt')])])
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In [9], line 10 8 bar_cols = {} 9 bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds] ---> 10 bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds] 11 bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds] 12 bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds] Cell In [9], line 10, in <listcomp>(.0) 8 bar_cols = {} 9 bar_cols['Auto Metrics Flags'] = [this_antenna.auto_flags[jd] for jd in jds] ---> 10 bar_cols[f'Dead Fraction in Ant Metrics (Jee)'] = [this_antenna.dead_flags_Jee[jd] for jd in jds] 11 bar_cols[f'Dead Fraction in Ant Metrics (Jnn)'] = [this_antenna.dead_flags_Jnn[jd] for jd in jds] 12 bar_cols['Crossed Fraction in Ant Metrics'] = [this_antenna.crossed_flags[jd] for jd in jds] KeyError: 2460100
This table reproduces each night's row for this antenna from the RTP Summary notebooks. For more info on the columns, see those notebooks, linked in the JD column.
display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>'))
HTML(table.render(render_links=True, escape=False))
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In [10], line 2 1 display(HTML(f'<h2>Antenna {antenna}, Node {this_antenna.node}:</h2>')) ----> 2 HTML(table.render(render_links=True, escape=False)) NameError: name 'table' is not defined
auto_metrics
notebooks.¶htmls_to_display = []
for am_html in auto_metric_htmls:
html_to_display = ''
# read html into a list of lines
with open(am_html) as f:
lines = f.readlines()
# find section with this antenna's metric plots and add to html_to_display
jd = [int(s) for s in re.split('_|\.', am_html) if s.isdigit()][-1]
try:
section_start_line = lines.index(f'<h2>Antenna {antenna}: {jd}</h2>\n')
except ValueError:
continue
html_to_display += lines[section_start_line].replace(str(jd), f'<a href="{jd_to_auto_metrics_url(jd)}" target="_blank">{jd}</a>')
for line in lines[section_start_line + 1:]:
html_to_display += line
if '<hr' in line:
htmls_to_display.append(html_to_display)
break
These figures are reproduced from auto_metrics
notebooks. For more info on the specific plots and metrics, see those notebooks (linked at the JD). The most recent 100 days (at most) are shown.
for i, html_to_display in enumerate(htmls_to_display):
if i == 100:
break
display(HTML(html_to_display))
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.578517 | -1.363619 | -1.221486 | -1.225528 | -1.221150 | -1.095174 | -1.303078 | -0.487297 | 0.578517 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.212645 | -1.028652 | -1.215569 | -1.137858 | -1.097925 | -1.079487 | -1.247554 | 0.212645 | -0.536273 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 1.419563 | -1.332550 | -1.173128 | -1.016197 | -1.020122 | -0.975004 | -0.904790 | -0.462172 | 1.419563 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 2.212531 | -1.255542 | -1.375179 | -1.149934 | -1.238896 | -1.097262 | -1.015119 | 2.212531 | -0.527654 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.677877 | -1.377897 | -1.244427 | -1.207948 | -1.089224 | -1.163936 | -1.162710 | -0.546773 | 0.677877 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | nn Temporal Discontinuties | -0.552975 | -1.138172 | -1.259332 | -1.141100 | -1.160680 | -1.240034 | -1.288058 | -0.579130 | -0.552975 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.211527 | -1.299932 | -1.180898 | -1.187336 | -1.121420 | -1.294188 | -1.243906 | -0.656047 | 0.211527 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.724086 | -1.316932 | -1.404984 | -1.073354 | -1.159153 | -0.957603 | -1.052690 | 0.724086 | -0.549805 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.150367 | -1.198768 | -1.172017 | -1.118483 | -1.061599 | -1.122607 | -1.021213 | -0.425395 | -0.150367 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 1.021871 | -1.370866 | -1.396302 | -1.277170 | -1.372860 | -1.415430 | -1.474323 | -0.579825 | 1.021871 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.761445 | -1.153972 | -1.286157 | -1.369740 | -1.312934 | -1.365827 | -1.419647 | 0.761445 | -0.671424 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 1.381817 | -1.389420 | -1.225191 | -1.381328 | -1.354725 | -1.372284 | -1.229518 | -0.689924 | 1.381817 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.399582 | -0.442783 | -0.640119 | -1.144095 | -1.263197 | -1.381603 | -1.296997 | -0.618677 | 0.399582 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | nn Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 1.115499 | -0.235276 | -0.082019 | -0.318734 | -0.666518 | -0.397115 | -1.158161 | -0.876295 | 1.115499 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.340271 | -1.284270 | -1.418769 | -1.388657 | -1.248019 | -0.732344 | -0.940041 | -0.340271 | -0.612930 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.345443 | -1.319126 | -1.361958 | -1.299579 | -1.271812 | -1.099751 | -1.086827 | -0.345443 | -0.612756 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | nn Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.423412 | -1.443055 | -1.380021 | -1.180516 | -1.140935 | -0.674484 | -0.933099 | 0.423412 | -0.688641 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.312181 | -1.073274 | -0.938634 | -1.179989 | -1.259188 | -1.667557 | -1.150792 | -0.666012 | -0.312181 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Shape | nan | nan | nan | nan | nan | nan | nan | nan | nan |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.218300 | -0.956516 | -1.264275 | -1.252643 | -1.248163 | -0.986356 | -1.311400 | -0.218300 | -0.724979 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.081019 | -1.248298 | -1.147600 | -1.147218 | -1.265705 | -1.093902 | -0.898124 | -0.631586 | 0.081019 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.919270 | -1.305956 | -1.206405 | -1.107771 | -1.202830 | -1.163815 | -0.984150 | -0.673118 | 0.919270 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | nn Shape Modified Z-Score | ee Shape Modified Z-Score | nn Power Modified Z-Score | ee Power Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Discontinuties Modified Z-Score | ee Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | 0.527136 | -1.031930 | -0.636957 | -1.048118 | -0.913387 | -1.119229 | -0.744483 | -0.523512 | 0.527136 |
Ant | Node | A Priori Status | Worst Metric | Worst Modified Z-Score | ee Shape Modified Z-Score | nn Shape Modified Z-Score | ee Power Modified Z-Score | nn Power Modified Z-Score | ee Temporal Variability Modified Z-Score | nn Temporal Variability Modified Z-Score | ee Temporal Discontinuties Modified Z-Score | nn Temporal Discontinuties Modified Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
152 | N16 | digital_ok | ee Temporal Discontinuties | -0.159193 | -1.318692 | -1.318102 | -1.119112 | -1.109376 | -0.998595 | -1.071141 | -0.159193 | -0.402164 |