Single File Calibration¶

by Josh Dillon, Aaron Parsons, and Tyler Cox, last updated January 19, 2023

This notebook is designed to infer as much information about the array from a single file, including pushing the calibration and RFI mitigation as far as possible

Here's a set of links to skip to particular figures and tables:

• Figure 1: RFI Flagging¶

• Figure 2: Plot of autocorrelations with classifications¶

• Figure 3: Summary of antenna classifications prior to calibration¶

• Figure 4: Redundant calibration of a single baseline group¶

• Figure 5: chi^2 per antenna across the array¶

• Figure 6: Summary of antenna classifications after redundant calibration¶

• Table 1: Complete summary of per antenna classifications¶

In [1]:
import time
tstart = time.time()
In [2]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
from scipy import constants, interpolate
import copy
import glob
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.max_rows', 1000)
from uvtools.plot import plot_antpos, plot_antclass
from hera_qm import ant_metrics, ant_class, xrfi
from hera_cal import io, utils, redcal, apply_cal, datacontainer, abscal
from hera_notebook_templates.data import DATA_PATH as HNBT_DATA
from IPython.display import display, HTML
import linsolve
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
In [3]:
# this enables better memory management on linux
import ctypes
def malloc_trim():
    try:
        ctypes.CDLL('libc.so.6').malloc_trim(0) 
    except OSError:
        pass

Parse inputs and outputs¶

To use this notebook interactively, you will have to provide a sum filename path if none exists as an environment variable. All other parameters have reasonable default values.

In [4]:
# figure out whether to save results
SAVE_RESULTS = os.environ.get("SAVE_RESULTS", "TRUE").upper() == "TRUE"

# get infile names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/mnt/sn1/zen.2459797.30001.sum.uvh5'  # If sum_file is not defined in the environment variables, define it here.
DIFF_FILE = SUM_FILE.replace('sum', 'diff')

# get outfilenames
AM_FILE = (SUM_FILE.replace('.uvh5', '.ant_metrics.hdf5') if SAVE_RESULTS else None)
ANTCLASS_FILE = (SUM_FILE.replace('.uvh5', '.ant_class.csv') if SAVE_RESULTS else None)
OMNICAL_FILE = (SUM_FILE.replace('.uvh5', '.omni.calfits') if SAVE_RESULTS else None)
OMNIVIS_FILE = (SUM_FILE.replace('.uvh5', '.omni_vis.uvh5') if SAVE_RESULTS else None)

for fname in ['SUM_FILE', 'DIFF_FILE', 'AM_FILE', 'ANTCLASS_FILE', 'OMNICAL_FILE', 'OMNIVIS_FILE']:
    print(f"{fname} = '{eval(fname)}'")
SUM_FILE = '/mnt/sn1/2460016/zen.2460016.41979.sum.uvh5'
DIFF_FILE = '/mnt/sn1/2460016/zen.2460016.41979.diff.uvh5'
AM_FILE = '/mnt/sn1/2460016/zen.2460016.41979.sum.ant_metrics.hdf5'
ANTCLASS_FILE = '/mnt/sn1/2460016/zen.2460016.41979.sum.ant_class.csv'
OMNICAL_FILE = '/mnt/sn1/2460016/zen.2460016.41979.sum.omni.calfits'
OMNIVIS_FILE = '/mnt/sn1/2460016/zen.2460016.41979.sum.omni_vis.uvh5'

Parse settings¶

Load settings relating to the operation of the notebook, then print what was loaded (or default).

In [5]:
# parse plotting settings
PLOT = os.environ.get("PLOT", "TRUE").upper() == "TRUE"
if PLOT:
    %matplotlib inline

# parse omnical settings
OC_MAX_DIMS = int(os.environ.get("OC_MAX_DIMS", 4))
OC_MIN_DIM_SIZE = int(os.environ.get("OC_MIN_DIM_SIZE", 8))
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"
OC_MIN_BL_LEN = float(os.environ.get("OC_MIN_BL_LEN", 1))
OC_MAX_BL_LEN = float(os.environ.get("OC_MAX_BL_LEN", 1e100))
OC_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_RERUN = int(os.environ.get("OC_MAX_RERUN", 4))
OC_USE_GPU = os.environ.get("SAVE_RESULTS", "FALSE").upper() == "TRUE"

# parse RFI settings
RFI_DPSS_HALFWIDTH = float(os.environ.get("RFI_DPSS_HALFWIDTH", 300e-9))
RFI_NSIG = float(os.environ.get("RFI_NSIG", 6))

# parse abscal settings
ABSCAL_MODEL_FILES_GLOB = os.environ.get("ABSCAL_MODEL_FILES_GLOB", None)
ABSCAL_MIN_BL_LEN = float(os.environ.get("ABSCAL_MIN_BL_LEN", 30.0))
ABSCAL_MAX_BL_LEN = float(os.environ.get("ABSCAL_MAX_BL_LEN", 100.0))
ABSCAL_PHS_MAX_ITER = int(os.environ.get("ABSCAL_PHS_MAX_ITER", 100))
ABSCAL_PHS_CONV_CRIT = float(os.environ.get("ABSCAL_PHS_CONV_CRIT", 1e-6))

# print settings
for setting in ['PLOT', 'SAVE_RESULTS', 'OC_MAX_DIMS', 'OC_MIN_DIM_SIZE', 'OC_SKIP_OUTRIGGERS', 
                'OC_MIN_BL_LEN', 'OC_MAX_BL_LEN', 'OC_MAXITER', 'OC_MAX_RERUN',
                'OC_USE_GPU', 'RFI_DPSS_HALFWIDTH', 'RFI_NSIG', 'ABSCAL_MODEL_FILES_GLOB', 
                'ABSCAL_MIN_BL_LEN', 'ABSCAL_MAX_BL_LEN', 'ABSCAL_PHS_MAX_ITER', 'ABSCAL_PHS_CONV_CRIT']:
    print(f'{setting} = {eval(setting)}')
PLOT = True
SAVE_RESULTS = True
OC_MAX_DIMS = 4
OC_MIN_DIM_SIZE = 8
OC_SKIP_OUTRIGGERS = True
OC_MIN_BL_LEN = 1.0
OC_MAX_BL_LEN = 1e+100
OC_MAXITER = 50
OC_MAX_RERUN = 4
OC_USE_GPU = False
RFI_DPSS_HALFWIDTH = 3e-07
RFI_NSIG = 6.0
ABSCAL_MODEL_FILES_GLOB = None
ABSCAL_MIN_BL_LEN = 30.0
ABSCAL_MAX_BL_LEN = 100.0
ABSCAL_PHS_MAX_ITER = 100
ABSCAL_PHS_CONV_CRIT = 1e-06

Parse bounds¶

Load settings related to classifying antennas as good, suspect, or bad, then print what was loaded (or default).

In [6]:
# ant_metrics bounds for low correlation / dead antennas
am_corr_bad = (0, float(os.environ.get("AM_CORR_BAD", 0.3)))
am_corr_suspect = (float(os.environ.get("AM_CORR_BAD", 0.3)), float(os.environ.get("AM_CORR_SUSPECT", 0.5)))

# ant_metrics bounds for cross-polarized antennas
am_xpol_bad = (-1, float(os.environ.get("AM_XPOL_BAD", -0.1)))
am_xpol_suspect = (float(os.environ.get("AM_XPOL_BAD", -0.1)), float(os.environ.get("AM_XPOL_SUSPECT", 0)))

# bounds on solar altitude (in degrees)
good_solar_altitude = (-90, float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)))
suspect_solar_altitude = (float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)), 90)

# bounds on zeros in spectra
good_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_GOOD", 2)))
suspect_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_SUSPECT", 8)))

# bounds on autocorrelation power
auto_power_good = (float(os.environ.get("AUTO_POWER_GOOD_LOW", 5)), float(os.environ.get("AUTO_POWER_GOOD_HIGH", 30)))
auto_power_suspect = (float(os.environ.get("AUTO_POWER_SUSPECT_LOW", 1)), float(os.environ.get("AUTO_POWER_SUSPECT_HIGH", 60)))

# bounds on autocorrelation slope
auto_slope_good = (float(os.environ.get("AUTO_SLOPE_GOOD_LOW", -0.4)), float(os.environ.get("AUTO_SLOPE_GOOD_HIGH", 0.4)))
auto_slope_suspect = (float(os.environ.get("AUTO_SLOPE_SUSPECT_LOW", -0.6)), float(os.environ.get("AUTO_SLOPE_SUSPECT_HIGH", 0.6)))

# bounds on autocorrelation RFI
auto_rfi_good = (0, float(os.environ.get("AUTO_RFI_GOOD", 0.015)))
auto_rfi_suspect = (0, float(os.environ.get("AUTO_RFI_SUSPECT", 0.03)))

# bounds on autocorrelation shape
auto_shape_good = (0, float(os.environ.get("AUTO_SHAPE_GOOD", 0.1)))
auto_shape_suspect = (0, float(os.environ.get("AUTO_SHAPE_SUSPECT", 0.2)))

# bounds on chi^2 per antenna in omnical
oc_cspa_good = (0, float(os.environ.get("OC_CSPA_GOOD", 2)))
oc_cspa_suspect = (0, float(os.environ.get("OC_CSPA_SUSPECT", 3)))

# print bounds
for bound in ['am_corr_bad', 'am_corr_suspect', 'am_xpol_bad', 'am_xpol_suspect', 
              'good_solar_altitude', 'suspect_solar_altitude',
              'good_zeros_per_eo_spectrum', 'suspect_zeros_per_eo_spectrum',
              'auto_power_good', 'auto_power_suspect', 'auto_slope_good', 'auto_slope_suspect',
              'auto_rfi_good', 'auto_rfi_suspect', 'auto_shape_good', 'auto_shape_suspect',
              'oc_cspa_good', 'oc_cspa_suspect']:
    print(f'{bound} = {eval(bound)}')
am_corr_bad = (0, 0.2)
am_corr_suspect = (0.2, 0.4)
am_xpol_bad = (-1, -0.1)
am_xpol_suspect = (-0.1, 0.0)
good_solar_altitude = (-90, 0.0)
suspect_solar_altitude = (0.0, 90)
good_zeros_per_eo_spectrum = (0, 2)
suspect_zeros_per_eo_spectrum = (0, 8)
auto_power_good = (5.0, 30.0)
auto_power_suspect = (1.0, 60.0)
auto_slope_good = (-0.4, 0.4)
auto_slope_suspect = (-0.6, 0.6)
auto_rfi_good = (0, 0.015)
auto_rfi_suspect = (0, 0.03)
auto_shape_good = (0, 0.1)
auto_shape_suspect = (0, 0.2)
oc_cspa_good = (0, 2.0)
oc_cspa_suspect = (0, 3.0)

Load sum and diff data¶

In [7]:
hd = io.HERADataFastReader(SUM_FILE)
data, _, _ = hd.read(read_flags=False, read_nsamples=False)
hd_diff = io.HERADataFastReader(DIFF_FILE)
diff_data, _, _ = hd_diff.read(read_flags=False, read_nsamples=False)
In [8]:
ants = sorted(set([ant for bl in hd.bls for ant in utils.split_bl(bl)]))
auto_bls = [bl for bl in data if (bl[0] == bl[1]) and (utils.split_pol(bl[2])[0] == utils.split_pol(bl[2])[1])]
antpols = sorted(set([ant[1] for ant in ants]))
In [9]:
# print basic information about the file
print(f'File: {SUM_FILE}')
print(f'JDs: {hd.times} ({np.median(np.diff(hd.times)) * 24 * 3600:.5f} s integrations)')
print(f'LSTS: {hd.lsts * 12 / np.pi } hours')
print(f'Frequencies: {len(hd.freqs)} {np.median(np.diff(hd.freqs)) / 1e6:.5f} MHz channels from {hd.freqs[0] / 1e6:.5f} to {hd.freqs[-1] / 1e6:.5f} MHz')
print(f'Antennas: {len(hd.data_ants)}')
print(f'Polarizations: {hd.pols}')
File: /mnt/sn1/2460016/zen.2460016.41979.sum.uvh5
JDs: [2460016.41973738 2460016.41984923] (9.66368 s integrations)
LSTS: [10.85495786 10.85764956] hours
Frequencies: 1536 0.12207 MHz channels from 46.92078 to 234.29871 MHz
Antennas: 198
Polarizations: ['nn', 'ee', 'ne', 'en']

Classify good, suspect, and bad antpols¶

Run ant_metrics¶

This classifies antennas as cross-polarized, low-correlation, or dead. Such antennas are excluded from any calibration.

In [10]:
am = ant_metrics.AntennaMetrics(SUM_FILE, DIFF_FILE, sum_data=data, diff_data=diff_data)
am.iterative_antenna_metrics_and_flagging(crossCut=am_xpol_bad[1], deadCut=am_corr_bad[1])
am.all_metrics = {}  # this saves time and disk by getting rid of per-iteration information we never use
if SAVE_RESULTS:
    am.save_antenna_metrics(AM_FILE, overwrite=True)
In [11]:
# Turn ant metrics into classifications
totally_dead_ants = [ant for ant, i in am.xants.items() if i == -1]
am_totally_dead = ant_class.AntennaClassification(good=[ant for ant in ants if ant not in totally_dead_ants], bad=totally_dead_ants)
am_corr = ant_class.antenna_bounds_checker(am.final_metrics['corr'], bad=[am_corr_bad], suspect=[am_corr_suspect], good=[(0, 1)])
am_xpol = ant_class.antenna_bounds_checker(am.final_metrics['corrXPol'], bad=[am_xpol_bad], suspect=[am_xpol_suspect], good=[(-1, 1)])
ant_metrics_class = am_totally_dead + am_corr + am_xpol

Mark sun-up (or high solar altitude) data as suspect¶

In [12]:
min_sun_alt = np.min(utils.get_sun_alt(hd.times))
solar_class = ant_class.antenna_bounds_checker({ant: min_sun_alt for ant in ants}, good=[good_solar_altitude], suspect=[suspect_solar_altitude])

Classify antennas responsible for 0s in visibilities as bad:¶

This classifier looks for X-engine failure or packet loss specific to an antenna which causes either the even visibilities (or the odd ones, or both) to be 0s.

In [13]:
zeros_class = ant_class.even_odd_zeros_checker(data, diff_data, good=good_zeros_per_eo_spectrum, suspect=suspect_zeros_per_eo_spectrum)
In [14]:
# delete diffs to save memory
del diff_data, hd_diff
malloc_trim()

Examine and classify autocorrelation power, slope, and RFI occpancy¶

These classifiers look for antennas with too high or low power, to steep a slope, or too much excess RFI.

In [15]:
auto_power_class = ant_class.auto_power_checker(data, good=auto_power_good, suspect=auto_power_suspect)
auto_slope_class = ant_class.auto_slope_checker(data, good=auto_slope_good, suspect=auto_slope_suspect, edge_cut=100, filt_size=17)
cache = {}
auto_rfi_class = ant_class.auto_rfi_checker(data, good=auto_rfi_good, suspect=auto_rfi_suspect, 
                                            filter_half_widths=[RFI_DPSS_HALFWIDTH], nsig=RFI_NSIG, cache=cache)
auto_class = auto_power_class + auto_slope_class + auto_rfi_class
In [16]:
del cache
malloc_trim()

Find and flag RFI¶

In [17]:
# Compute int_count for all unflagged autocorrelations averaged together
int_time = 24 * 3600 * np.median(np.diff(data.times_by_bl[auto_bls[0][0:2]]))
chan_res = np.median(np.diff(data.freqs))
final_class = ant_metrics_class + zeros_class + auto_class
int_count = int(int_time * chan_res) * (len(final_class.good_ants) + len(final_class.suspect_ants))
avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls if final_class[utils.split_bl(bl)[0]] != 'bad'], axis=0)}
# Flag RFI first with channel differences and then with DPSS
antenna_flags, _ = xrfi.flag_autos(avg_auto, int_count=int_count, nsig=(RFI_NSIG * 5))
_, rfi_flags = xrfi.flag_autos(avg_auto, int_count=int_count, flag_method='dpss_flagger',
                               flags=antenna_flags, freqs=data.freqs, filter_centers=[0],
                               filter_half_widths=[RFI_DPSS_HALFWIDTH], eigenval_cutoff=[1e-9], nsig=RFI_NSIG)
malloc_trim()
In [18]:
def rfi_plot():
    plt.figure(figsize=(12, 5), dpi=100)
    plt.semilogy(hd.freqs / 1e6, np.where(rfi_flags, np.nan, avg_auto[(-1, -1, 'ee')])[1], label = 'Average Good or Suspect Autocorrelation', zorder=100)
    plt.semilogy(hd.freqs / 1e6, np.where(False, np.nan, avg_auto[(-1, -1, 'ee')])[1], 'r', lw=.5, label=f'{np.sum(rfi_flags[0])} Channels Flagged for RFI')
    plt.legend()
    plt.xlabel('Frequency (MHz)')
    plt.ylabel('Uncalibrated Autocorrelation')
    plt.tight_layout()

Figure 1: RFI Flagging¶

This figure shows RFI identified using the average of all autocorrelations---excluding bad antennas---for the first integration in the file.

In [19]:
rfi_plot()
In [20]:
def autocorr_plot(cls):    
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100, sharey=True, gridspec_kw={'wspace': 0})
    labels = []
    colors = ['darkgreen', 'goldenrod', 'maroon']
    for ax, pol in zip(axes, antpols):
        for ant in cls.ants:
            if ant[1] == pol:
                color = colors[cls.quality_classes.index(cls[ant])]
                ax.semilogy(np.mean(data[utils.join_bl(ant, ant)], axis=0), color=color, lw=.5)
        ax.set_xlabel('Channel', fontsize=12)
        ax.set_title(f'{utils.join_pol(pol, pol)}-Polarized Autos')

    axes[0].set_ylabel('Raw Autocorrelation', fontsize=12)
    axes[1].legend([matplotlib.lines.Line2D([0], [0], color=color) for color in colors], 
                   [cls.capitalize() for cls in auto_class.quality_classes], ncol=1, fontsize=12, loc='upper right', framealpha=1)
    plt.tight_layout()

Classify antennas based on shapes, excluding RFI-contamined channels¶

In [21]:
auto_shape_class = ant_class.auto_shape_checker(data, good=auto_shape_good, suspect=auto_shape_suspect,
                                                flag_spectrum=np.sum(rfi_flags, axis=0).astype(bool), antenna_class=final_class)
auto_class += auto_shape_class

Figure 2: Plot of autocorrelations with classifications¶

This figure shows a plot of all autocorrelations in the array, split by polarization. Antennas are classified based on their autocorrelations into good, suspect, and bad, by examining power, slope, and RFI-occupancy.

In [22]:
if PLOT: autocorr_plot(auto_class)

Summarize antenna classification prior to redundant-baseline calibration¶

In [23]:
final_class = ant_metrics_class + solar_class + zeros_class + auto_class
In [24]:
def array_class_plot(cls, extra_label=""):
    outriggers = [ant for ant in hd.data_ants if ant >= 320]

    if len(outriggers) > 0:
        fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
        plot_antclass(hd.antpos, cls, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')
        plot_antclass(hd.antpos, cls, ax=axes[1], ants=outriggers, radius=50, title='Outriggers')
    else:
        fig, axes = plt.subplots(1, 1, figsize=(9, 6), dpi=100)
        plot_antclass(hd.antpos, cls, ax=axes, ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')

Figure 3: Summary of antenna classifications prior to calibration¶

This figure shows the location and classification of all antennas prior to calibration. Antennas are split along the diagonal, with ee-polarized antpols represented by the southeast half of each antenna and nn-polarized antpols represented by the northwest half. Outriggers are split from the core and shown at exaggerated size in the right-hand panel. This classification includes ant_metrics, a count of the zeros in the even or odd visibilities, and autocorrelation power, slope, and RFI occupancy. An antenna classified as bad in any classification will be considered bad. An antenna marked as suspect any in any classification will be considered suspect unless it is also classified as bad elsewhere.

In [25]:
if PLOT: array_class_plot(final_class)

Perform redundant-baseline calibration¶

In [26]:
def classify_off_grid(reds, all_ants):
    '''Returns AntennaClassification of all_ants where good ants are in reds while bad ants are not.'''
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])
    on_grid = [ant for ant in all_ants if ant in ants_in_reds]
    off_grid = [ant for ant in all_ants if ant not in ants_in_reds]
    return ant_class.AntennaClassification(good=on_grid, bad=off_grid)

Perform iterative redcal¶

In [27]:
redcal_start = time.time()
rc_settings = {'max_dims': OC_MAX_DIMS, 'oc_conv_crit': 1e-10, 'gain': 0.4, 'run_logcal': False,
               'oc_maxiter': OC_MAXITER, 'check_after': OC_MAXITER, 'use_gpu': OC_USE_GPU}
fr_settings = {'max_dims': OC_MAX_DIMS, 'min_dim_size': OC_MIN_DIM_SIZE, 'min_bl_cut': OC_MIN_BL_LEN, 'max_bl_cut': OC_MAX_BL_LEN}

# figure out and filter reds and classify antennas based on whether or not they are on the main grid
reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
reds = redcal.filter_reds(reds, ex_ants=final_class.bad_ants, antpos=hd.data_antpos, **fr_settings)
if OC_SKIP_OUTRIGGERS:
    reds = redcal.filter_reds(reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
redcal_class = classify_off_grid(reds, ants)

# perform first stage of redundant calibration, 
meta, sol = redcal.redundantly_calibrate(data, reds, **rc_settings)
malloc_trim()
max_dly = np.max(np.abs(list(meta['fc_meta']['dlys'].values())))
med_cspa = {ant: np.median(meta['chisq_per_ant'][ant]) for ant in meta['chisq_per_ant']}
cspa_class = ant_class.antenna_bounds_checker(med_cspa, good=np.array(oc_cspa_good)*5, suspect=np.array(oc_cspa_suspect)*5, bad=(0, np.inf))
redcal_class += cspa_class
print(f'Removing {cspa_class.bad_ants} for high chi^2.')

# iteratively rerun redundant calibration
for i in range(OC_MAX_RERUN):
    # refilter reds and update classification to reflect new off-grid ants, if any
    reds = redcal.filter_reds(reds, ex_ants=(final_class + redcal_class).bad_ants, antpos=hd.data_antpos, **fr_settings)
    reds = sorted(reds, key=len, reverse=True)
    redcal_class += classify_off_grid(reds, ants)
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])    
   
    # re-run redundant calibration using previous solution, updating bad and suspicious antennas
    meta, sol = redcal.redundantly_calibrate(data, reds, sol0=sol, **rc_settings)
    malloc_trim()
    
    # recompute chi^2 for bad antennas without bad antennas to make sure they are actually bad
    med_cspa = {ant: np.median(meta['chisq_per_ant'][ant]) for ant in meta['chisq_per_ant']}
    sol2 = redcal.RedSol(sol.reds, gains={ant: sol[ant] for ant in med_cspa if med_cspa[ant] <= oc_cspa_suspect[1]}, vis=sol.vis)
    new_chisq_per_ant = {ant: np.array(meta['chisq_per_ant'][ant]) for ant in sol2.gains}
    redcal.expand_omni_gains(sol2, reds, data, chisq_per_ant=new_chisq_per_ant)
    med_cspa = {ant: np.min([med_cspa[ant], np.median(new_chisq_per_ant[ant])]) for ant in med_cspa}
    
    # remove bad antennas
    cspa_class = ant_class.antenna_bounds_checker(med_cspa, good=oc_cspa_good, suspect=oc_cspa_suspect, bad=(0, np.inf))    
    redcal_class += cspa_class
    print(f'Removing {cspa_class.bad_ants} for high chi^2.')
    if len(cspa_class.bad_ants) == 0:
        break  # no new antennas to flag

print(f'Finished redcal in {(time.time() - redcal_start) / 60:.2f} minutes.')
Removing set() for high chi^2.
Removing {(54, 'Jnn')} for high chi^2.
Removing set() for high chi^2.
Finished redcal in 6.31 minutes.
In [28]:
final_class += redcal_class

Expand solution to include calibratable baselines excluded from redcal (e.g. because they were too long)¶

In [29]:
expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=(ant_metrics_class + solar_class + zeros_class + auto_class).bad_ants, 
                                   max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
if OC_SKIP_OUTRIGGERS:
    expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
redcal.expand_omni_vis(sol, expanded_reds, data, chisq=meta['chisq'], chisq_per_ant=meta['chisq_per_ant'])
In [30]:
# now figure out flags, nsamples etc.
omni_flags = {ant: ~np.isfinite(g) for ant, g in sol.gains.items()}
vissol_flags = datacontainer.RedDataContainer({bl: ~np.isfinite(v) for bl, v in sol.vis.items()}, reds=sol.vis.reds)
single_nsamples_array = np.ones((len(hd.times), len(hd.freqs)), dtype=float)
nsamples = datacontainer.DataContainer({bl: single_nsamples_array for bl in data})
vissol_nsamples = redcal.count_redundant_nsamples(nsamples, expanded_reds, good_ants=sol.gains)
sol.make_sol_finite()        

Fix the firstcal delay slope degeneracy using RFI transmitters¶

In [31]:
# find channels clearly contaminated by RFI
not_bad_ants = [ant for ant in final_class.ants if final_class[ant] != 'bad']
chan_flags = np.mean([xrfi.detrend_medfilt(data[utils.join_bl(ant, ant)], Kf=8, Kt=2) for ant in not_bad_ants], axis=(0, 1)) > 5

# hardcoded RFI transmitters and their headings
# channel: frequency (Hz), heading (rad), chi^2
phs_sol = {359: ( 90744018.5546875, 0.7853981, 23.3),
           360: ( 90866088.8671875, 0.7853981, 10.8),
           385: ( 93917846.6796875, 0.7853981, 27.3),
           386: ( 94039916.9921875, 0.7853981, 18.1),
           400: ( 95748901.3671875, 6.0632738, 24.0),
           441: (100753784.1796875, 0.7853981, 21.7),
           442: (100875854.4921875, 0.7853981, 19.4),
           455: (102462768.5546875, 6.0632738, 18.8),
           456: (102584838.8671875, 6.0632738,  8.8),
           471: (104415893.5546875, 0.7853981, 13.3),
           484: (106002807.6171875, 6.0632738, 21.2),
           485: (106124877.9296875, 6.0632738,  4.0),
          1181: (191085815.4296875, 0.7853981, 26.3),
          1182: (191207885.7421875, 0.7853981, 27.0),
          1183: (191329956.0546875, 0.7853981, 25.6),
          1448: (223678588.8671875, 2.6075219, 25.7),
          1449: (223800659.1796875, 2.6075219, 22.6),
          1450: (223922729.4921875, 2.6075219, 11.6),
          1451: (224044799.8046875, 2.6075219,  5.9),
          1452: (224166870.1171875, 2.6075219, 22.6),
          1510: (231246948.2421875, 0.1068141, 23.9)}

if not np.isclose(hd.freqs[0], 46920776.3671875, atol=0.001) or len(hd.freqs) != 1536:
    # We have less frequencies than usual (maybe testing)
    phs_sol = {np.argmin(np.abs(hd.freqs - freq)): (freq, heading, chisq) for chan, (freq, heading, chisq) in phs_sol.items() if hd.freqs[0] <= freq <= hd.freqs[-1]}


rfi_chans = [chan for chan in phs_sol if chan_flags[chan]]
print('Channels used for delay-slope calibration with RFI:', rfi_chans)
rfi_angles = np.array([phs_sol[chan][1] for chan in rfi_chans])
rfi_headings = np.array([np.cos(rfi_angles), np.sin(rfi_angles), np.zeros_like(rfi_angles)])
rfi_chisqs = np.array([phs_sol[chan][2] for chan in rfi_chans])
Channels used for delay-slope calibration with RFI: [359, 360, 385, 386, 400, 441, 442, 455, 456, 471, 484, 485]
In [32]:
# resolve firstcal degeneracy with delay slopes set by RFI transmitters, update cal
RFI_dly_slope_gains = abscal.RFI_delay_slope_cal([red for red in expanded_reds if red[0] in sol.vis], hd.antpos, sol.vis, hd.freqs, rfi_chans, rfi_headings, rfi_wgts=rfi_chisqs**-1,
                                                 min_tau=-max_dly, max_tau=max_dly, delta_tau=0.1e-9, return_gains=True, gain_ants=sol.gains.keys())
sol.gains = {ant: g * RFI_dly_slope_gains[ant] for ant, g in sol.gains.items()}
apply_cal.calibrate_in_place(sol.vis, RFI_dly_slope_gains)
malloc_trim()

Perform absolute amplitude calibration using a model of autocorrelations¶

In [33]:
# Load simulated and then downsampled model of autocorrelations that includes receiver noise, then interpolate to upsample
hd_model = io.HERADataFastReader(f'{HNBT_DATA}/SSM_autocorrelations_downsampled.uvh5')
model, _, _ = hd_model.read(read_flags=False, read_nsamples=False)
per_pol_interpolated_model = {}
for bl in model:
    sorted_lsts, lst_indices = np.unique(model.lsts, return_index=True)
    periodic_model = np.vstack([model[bl][lst_indices, :], model[bl][lst_indices[0], :]])
    periodic_lsts = np.append(sorted_lsts, sorted_lsts[0] + 2 * np.pi)
    lst_interpolated = interpolate.CubicSpline(periodic_lsts, periodic_model, axis=0, bc_type='periodic')(data.lsts)
    per_pol_interpolated_model[bl[2]] = interpolate.CubicSpline(model.freqs, lst_interpolated, axis=1)(data.freqs)
model = {bl: per_pol_interpolated_model[bl[2]] for bl in auto_bls if utils.split_bl(bl)[0] not in final_class.bad_ants}    
In [34]:
# Run abscal and update omnical gains with abscal gains
redcaled_autos = {bl: sol.calibrate_bl(bl, data[bl]) for bl in auto_bls if utils.split_bl(bl)[0] not in final_class.bad_ants}
g_abscal = abscal.abs_amp_logcal(model, redcaled_autos, verbose=False, return_gains=True, gain_ants=sol.gains)
sol.gains = {ant: g * g_abscal[ant] for ant, g in sol.gains.items()}
apply_cal.calibrate_in_place(sol.vis, g_abscal)
In [35]:
del hd_model, model, redcaled_autos
malloc_trim()

Full absolute calibration of phase slopes¶

If an ABSCAL_MODEL_FILES_GLOB is provided, try to perform a full absolute calibration of tip-tilt phase slopes using that those model files. Specifically, this step calibrates omnical visbility solutions using unique baselines simulated with a model of the sky and HERA's beam.

In [36]:
if ABSCAL_MODEL_FILES_GLOB is not None:
    abscal_model_files = sorted(glob.glob(ABSCAL_MODEL_FILES_GLOB))
else:
    # try to find files on site
    abscal_model_files = sorted(glob.glob('/mnt/sn1/abscal_models/H4C_1/abscal_files_unique_baselines/zen.2458894.?????.uvh5'))
    if len(abscal_model_files) == 0:
        # try to find files at NRAO
        abscal_model_files = sorted(glob.glob('/lustre/aoc/projects/hera/zmartino/hera_calib_model/H4C_1/abscal_files_unique_baselines/zen.2458894.?????.uvh5'))
print(f'Found {len(abscal_model_files)} abscal model files{" in " + os.path.dirname(abscal_model_files[0]) if len(abscal_model_files) > 0 else ""}.')
Found 0 abscal model files.
In [37]:
# Try to perform a full abscal of phase
if len(abscal_model_files) == 0:
    print('No model files found... not performing full absolute calibration of phase slopes.')
else:
    # figure out which model files match the LSTs of the data
    matched_model_files = sorted(set(abscal.match_times(SUM_FILE, abscal_model_files, filetype='uvh5')))
    
    if len(matched_model_files) == 0:
        print('No model files found matching the LSTs of this file... not performing full absolute calibration of phase slopes.')
    else:
        # figure out appropriate model times to load
        hdm = io.HERAData(matched_model_files)
        all_model_times, all_model_lsts = abscal.get_all_times_and_lsts(hdm, unwrap=True)
        d2m_time_map = abscal.get_d2m_time_map(data.times, np.unwrap(data.lsts), all_model_times, all_model_lsts, extrap_limit=.5)
        
    for pol in ['ee', 'nn']:
        # figure out which baselines are matched in the data and the model, then load the model
        print(f'Performing absolute phase slope calibration of {pol}-polarized visibility solutions...')
        unflagged_data_bls = [bl for bl in vissol_flags if not np.all(vissol_flags[bl])]#cal['vf_omnical'] if not np.all(cal['vf_omnical'][bl])]
        model_bls = hdm.bls
        model_antpos = hdm.data_antpos
        if len(matched_model_files) > 1:  # in this case, it's a dictionary
            model_bls = list(set([bl for bls in list(hdm.bls.values()) for bl in bls]))
            model_antpos = {ant: pos for antpos in hdm.data_antpos.values() for ant, pos in antpos.items()}
        data_bl, model_bl, data_to_model_bl_map = abscal.match_baselines(unflagged_data_bls, model_bls, data.antpos, model_antpos=model_antpos, 
                                                                         pols=[pol], data_is_redsol=True, model_is_redundant=True, tol=1.0,
                                                                         min_bl_cut=ABSCAL_MIN_BL_LEN, max_bl_cut=ABSCAL_MAX_BL_LEN, verbose=True)
        model, model_flags, _ = io.partial_time_io(hdm, np.unique([d2m_time_map[time] for time in data.times]), bls=model_bl)

        # rephase model to match in lsts
        model_blvecs = {bl: model.antpos[bl[0]] - model.antpos[bl[1]] for bl in model.keys()}
        utils.lst_rephase(model, model_blvecs, model.freqs, data.lsts - model.lsts,
                          lat=hdm.telescope_location_lat_lon_alt_degrees[0], inplace=True)

        # rekey model to match data
        model = datacontainer.DataContainer({bl: model[data_to_model_bl_map[bl]] for bl in data_bl})
        model_flags = datacontainer.DataContainer({bl: model_flags[data_to_model_bl_map[bl]] for bl in data_bl})

        # generate weights
        redcaled_autos = {bl: sol.calibrate_bl(bl, data[bl]) for bl in auto_bls if (bl[2] == pol) and 
                          (utils.split_bl(bl)[0] not in final_class.bad_ants)}
        data_flags = datacontainer.DataContainer({bl: vissol_flags[bl] for bl in data_bl})
        auto_flags = {bl: np.zeros_like(redcaled_autos[bl], dtype=bool) for bl in redcaled_autos}
        data_wgts = abscal.build_data_wgts(data_flags, vissol_nsamples, model_flags, redcaled_autos, auto_flags,
                                           times_by_bl=data.times_by_bl, df=np.median(np.ediff1d(data.freqs)),
                                           data_is_redsol=True, antpos=data.antpos)
        # Run calibartion
        data_here = datacontainer.DataContainer({bl: np.array(sol.vis[bl]) for bl in data_bl}) # TODO: do we want to copy???
        data_here.antpos = data.antpos
        data_here.freqs = data.freqs                      
        rc_flags_subset = {ant: np.zeros_like(gain, dtype=bool) for ant, gain in sol.gains.items() if utils.join_pol(ant[1], ant[1]) == pol}
        delta_gains = abscal.post_redcal_abscal(model, data_here, data_wgts, rc_flags_subset, 
                                                phs_max_iter=ABSCAL_PHS_MAX_ITER, phs_conv_crit=ABSCAL_PHS_CONV_CRIT, verbose=False, 
                                                use_abs_amp_logcal=False, use_abs_amp_lincal=False)

        # Update gains and visibilities
        sol.gains = {ant: g * delta_gains.get(ant, 1) for ant, g in sol.gains.items()}
        apply_cal.calibrate_in_place(sol.vis, delta_gains)
        
        # TODO: compute abscal chisq?
No model files found... not performing full absolute calibration of phase slopes.
In [38]:
def redundant_group_plot():
    fig, axes = plt.subplots(2, 2, figsize=(14, 6), dpi=100, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0})
    for i, pol in enumerate(['ee', 'nn']):
        reds_here = redcal.get_reds(hd.data_antpos, pols=[pol], pol_mode='1pol')
        red = sorted(redcal.filter_reds(reds_here, ex_ants=final_class.bad_ants), key=len, reverse=True)[0]
        rc_data = {bl: sol.calibrate_bl(bl, data[bl]) for bl in red}
        for bl in red:
            axes[0, i].plot(hd.freqs/1e6, np.angle(rc_data[bl][0]), alpha=.5, lw=.5)
            axes[1, i].semilogy(hd.freqs/1e6, np.abs(rc_data[bl][0]), alpha=.5, lw=.5)
        axes[0, i].plot(hd.freqs / 1e6, np.angle(sol.vis[red[0]][0]), lw=1, c='k')
        axes[1, i].semilogy(hd.freqs / 1e6, np.abs(sol.vis[red[0]][0]), lw=1, c='k', label=f'Baseline Group:\n{red[0]}')
        axes[1, i].set_xlabel('Frequency (MHz)')
        axes[1, i].legend(loc='upper right')
    axes[0, 0].set_ylabel('Visibility Phase (radians)')
    axes[1, 0].set_ylabel('Visibility Amplitude (Jy)')
    plt.tight_layout()

Figure 4: Redundant calibration of a single baseline group¶

The results of a redundant-baseline calibration of a single integration and a single group, the one with the highest redundancy in each polarization after antenna classification and excision based on the above, plus the removal of antennas with high chi^2 per antenna. The black line is the redundant visibility solution. Each thin colored line is a different baseline group. Phases are shown in the top row, amplitudes in the bottom, ee-polarized visibilities in the left column, and nn-polarized visibilities in the right.

In [39]:
if PLOT: redundant_group_plot()

Attempt to calibrate some flagged antennas¶

This attempts to calibrate bad antennas using information from good or suspect antennas without allowing bad antennas to affect their calibration. However antennas flagged for ant_metrics or lots of zeros in the even or odd visibilities are considered beyond saving. Likewise, some antennas would add extra degeneracies (controlled by OC_MAX_DIMS, OC_MIN_DIM_SIZE, and OC_SKIP_OUTRIGGERS) are excluded.

In [40]:
expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
sol.vis.build_red_keys(expanded_reds)
redcal.expand_omni_gains(sol, expanded_reds, data, chisq_per_ant=meta['chisq_per_ant'])
redcal.expand_omni_vis(sol, expanded_reds, data)
sol.make_sol_finite()
malloc_trim()
In [41]:
def array_chisq_plot():
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100)
    for ax, pol in zip(axes, ['ee', 'nn']):
        ants_to_plot = set([ant for ant in meta['chisq_per_ant'] if utils.join_pol(ant[1], ant[1]) == pol])
        cspas = np.array([np.median(meta['chisq_per_ant'][ant]) for ant in ants_to_plot])
        xpos = [hd.antpos[ant[0]][0] for ant in ants_to_plot]
        ypos = [hd.antpos[ant[0]][1] for ant in ants_to_plot]
        scatter = ax.scatter(xpos, ypos, s=300, c=cspas, lw=.25, edgecolors=np.where(np.isfinite(cspas) & (cspas > 0), 'none', 'k'), 
                             norm=matplotlib.colors.LogNorm(vmin=1, vmax=oc_cspa_suspect[1]))
        for ant in ants_to_plot:
            ax.text(hd.antpos[ant[0]][0], hd.antpos[ant[0]][1], ant[0], va='center', ha='center', fontsize=8,
                    c=('r' if ant in final_class.bad_ants else 'w'))
        plt.colorbar(scatter, ax=ax, extend='both')
        ax.axis('equal')
        ax.set_xlabel('East-West Position (meters)')
        ax.set_ylabel('North-South Position (meters)')
        ax.set_title(f'{pol}-pol $\\chi^2$ / Antenna (Red is Flagged)')
    plt.tight_layout()

Figure 5: chi^2 per antenna across the array¶

This plot shows median (taken over time and frequency) of the normalized chi^2 per antenna. The expectation value for this quantity when the array is perfectly redundant is 1.0. Antennas that are classified as bad for any reason have their numbers shown in red. Some of those antennas were classified as bad during redundant calibration for high chi^2. Some of those antennas were originally excluded from redundant calibration because they were classified as bad earlier for some reason. See here for more details. Note that the color scale saturates at below 1 and above 10.

In [42]:
if PLOT: array_chisq_plot()

Figure 6: Summary of antenna classifications after redundant calibration¶

This figure is the same as Figure 2, except that it now includes additional suspect or bad antennas based on redundant calibration. This can include antennas with high chi^2, but it can also include antennas classified as "bad" because they would add extra degeneracies to calibration.

In [43]:
if PLOT: array_class_plot(final_class, extra_label=", Post-Redcal")
In [44]:
to_show = {'Antenna': [f'{ant[0]}{ant[1][-1]}' for ant in ants]}
classes = {'Antenna': [final_class[ant] if ant in final_class else '-' for ant in ants]}
to_show['Dead?'] = [{'good': 'No', 'bad': 'Yes'}[am_totally_dead[ant]] if (ant in am_totally_dead) else '' for ant in ants]
classes['Dead?'] = [am_totally_dead[ant] if (ant in am_totally_dead) else '' for ant in ants]
for title, ac in [('Low Correlation', am_corr),
                  ('Cross-Polarized', am_xpol),
                  ('Solar Alt', solar_class),
                  ('Even/Odd Zeros', zeros_class),
                  ('Autocorr Power', auto_power_class),
                  ('Autocorr Slope', auto_slope_class),
                  ('RFI in Autos', auto_rfi_class),
                  ('Autocorr Shape', auto_shape_class)]:
    to_show[title] = [f'{ac._data[ant]:.2G}' if (ant in ac._data) else '' for ant in ants]
    classes[title] = [ac[ant] if ant in ac else '' for ant in ants]
    
to_show['Redcal chi^2'] = [f'{np.median(meta["chisq_per_ant"][ant]):.3G}' if (ant in meta['chisq_per_ant']) else '-' for ant in ants]
classes['Redcal chi^2'] = [redcal_class[ant] if ant in redcal_class else '' for ant in ants]

df = pd.DataFrame(to_show)
df_classes = pd.DataFrame(classes)
colors = {'good': 'darkgreen', 'suspect': 'goldenrod', 'bad': 'maroon'}
df_colors = df_classes.applymap(lambda x: f'background-color: {colors.get(x, None)}')

table = df.style.hide_index() \
                .apply(lambda x: pd.DataFrame(df_colors.values, columns=x.columns), axis=None) \
                .set_properties(subset=['Antenna'], **{'font-weight': 'bold', 'border-right': "3pt solid black"}) \
                .set_properties(subset=df.columns[1:], **{'border-left': "1pt solid black"}) \
                .set_properties(**{'text-align': 'center', 'color': 'white'})

Table 1: Complete summary of per-antenna classifications¶

This table summarizes the results of the various classifications schemes detailed above. As before, green is good, yellow is suspect, and red is bad. The color for each antenna (first column) is the final summary of all other classifications. Antennas missing from redcal χ2χ2 were excluded redundant-baseline calibration, either because they were flagged by ant_metrics or the even/odd zeros check, or because they would add unwanted extra degeneracies.

In [45]:
HTML(table.render())
Out[45]:
Antenna Dead? Low Correlation Cross-Polarized Solar Alt Even/Odd Zeros Autocorr Power Autocorr Slope RFI in Autos Autocorr Shape Redcal chi^2
3e No 0.5 0.44 -55 0 9.6 0.13 0.0075 0.045 1.36
3n No 0.038 0.44 -55 1 0.62 0.59 0.036 0.16 1.17
4e No 0.51 0.29 -55 0 45 0.089 0.022 0.032 1.42
4n No 0.37 0.29 -55 0 48 0.56 0 0.17 1.8
5e No 0.04 0.0028 -55 0 0.7 0.54 0.026 0.13 1.16
5n No 0.036 0.0028 -55 0 0.67 0.58 0.013 0.16 1.17
7e No 0.54 0.3 -55 0 13 0.14 0.0033 0.026 1.66
7n No 0.57 0.3 -55 0 11 0.03 0.00065 0.035 1.84
8e No 0.54 0.29 -55 0 10 0.15 0.0023 0.03 1.77
8n No 0.57 0.29 -55 0 9.7 0.029 0.00065 0.026 1.88
9e No 0.51 0.3 -55 0 4.1 0.22 0.0085 0.034 1.62
9n No 0.57 0.3 -55 0 13 0.013 0.00098 0.025 1.93
10e No 0.54 0.29 -55 0 23 0.15 0.00033 0.02 1.57
10n No 0.57 0.29 -55 0 14 0.0012 0.0013 0.025 1.95
15e No 0.35 0.29 -55 0 4.8 1.1 0.00065 0.29 2.24
15n No 0.52 0.29 -55 0 5.3 0.014 0.00065 0.022 1.37
16e No 0.5 0.42 -55 1 4.2 0.25 0.00098 0.029 1.46
16n No 0.035 0.42 -55 0 0.63 0.58 0.024 0.16 1.13
17e No 0.54 0.38 -55 0 8 0.1 0.00033 0.025 1.44
17n No 0.32 0.38 -55 0 0.82 0.38 0.015 0.11 1.34
18e No 0.035 0.29 -55 0 0.7 0.54 0.027 0.13 1.12
18n No 0.35 0.29 -55 0 8.9 0.17 0.24 0.14 1.42
19e No 0.54 0.29 -55 0 12 0.12 0.0036 0.03 1.42
19n No 0.58 0.29 -55 0 26 0.0022 0 0.018 1.52
20e No 0.53 0.29 -55 0 5.6 0.21 0.0042 0.12 1.57
20n No 0.58 0.29 -55 0 14 -0.014 0 0.025 1.65
21e No 0.54 0.28 -55 0 11 0.23 0.00033 0.041 1.56
21n No 0.57 0.28 -55 0 9.8 0.078 0.0013 0.029 1.85
22e No 0.5 0.28 -55 96 22 0.16 0.0013 0.011 2.25
22n No 0.54 0.28 -55 96 22 0.015 0.0013 0.021 2.85
27e No 0.03 -2.9E-05 -55 1 0.69 0.5 0.085 0.12 1.12
27n No 0.029 -2.9E-05 -55 0 0.65 0.55 0.056 0.15 1.12
28e No 0.027 0.16 -55 0 0.73 0.51 0.016 0.12 1.11
28n No 0.22 0.16 -55 0 4.1 0.82 0.22 0.26 1.23
29e No 0.53 0.29 -55 0 4.6 0.14 0.00065 0.013 1.56
29n No 0.56 0.29 -55 0 8.8 0.091 0.0013 0.027 1.55
30e No 0.54 0.3 -55 0 8.9 0.19 0.00098 0.037 1.41
30n No 0.58 0.3 -55 0 15 -0.021 0 0.023 1.45
31e No 0.56 0.28 -55 0 6.9 0.051 0.00065 0.037 1.42
31n No 0.58 0.28 -55 0 7.1 0.044 0 0.016 1.49
32e No 0.44 0.18 -55 0 7.8 0.83 0.00098 0.22 2.43
32n No 0.46 0.18 -55 0 5.1 0.93 0.00033 0.25 2.51
34e No 0.034 0.0048 -55 0 2.9 0.57 0.036 0.13 1.2
34n No 0.042 0.0048 -55 0 2.9 0.61 0.026 0.17 1.22
35e No 0.52 0.28 -55 0 24 0.13 0.0078 0.012 1.51
35n No 0.53 0.28 -55 0 17 0.1 0.00098 0.021 1.76
36e No 0.49 0.31 -55 0 7.1 -0.19 0.00033 0.099 1.29
36n No 0.49 0.31 -55 0 7.9 -0.32 0.0065 0.1 1.37
37e No 0.51 0.39 -55 0 18 0.061 0.00033 0.047 1.28
37n No 0.029 0.39 -55 1 0.31 0.96 0.034 0.24 1.14
38e No 0.52 0.3 -55 0 14 0.088 0 0.048 1.33
38n No 0.5 0.3 -55 0 4.7 0.14 0.00065 0.037 1.35
40e No 0.52 0.3 -55 0 4.7 0.17 0.00033 0.026 1.6
40n No 0.55 0.3 -55 0 11 0.0028 0.00065 0.034 1.53
41e No 0.54 0.28 -55 0 6.4 0.065 0.0016 0.033 1.67
41n No 0.56 0.28 -55 0 7.2 -0.034 0.00033 0.032 1.52
42e No 0.29 -0.25 -55 0 4.5 0.12 0 0.024 3.8
42n No 0.3 -0.25 -55 0 13 0.0022 0.00065 0.056 2.98
43e No 0.57 0.28 -55 0 20 0.072 0 0.038 1.37
43n No 0.58 0.28 -55 0 8.4 0.11 0 0.03 1.39
44e No 0.57 0.29 -55 0 18 0.11 0.00065 0.026 1.37
44n No 0.6 0.29 -55 0 11 0.018 0 0.027 1.49
45e No 0.56 0.28 -55 0 8.4 0.064 0.00098 0.037 1.37
45n No 0.58 0.28 -55 0 8.1 -0.08 0.0098 0.068 1.48
46e No 0.55 0.3 -55 0 11 0.11 0.00033 0.028 1.4
46n No 0.59 0.3 -55 0 18 -0.032 0 0.031 1.58
47e No 0.03 0.013 -55 0 3 0.55 0.1 0.12 1.17
47n No 0.051 0.013 -55 0 3.2 0.59 0.023 0.16 1.19
48e No 0.51 0.29 -55 0 20 0.26 0.002 0.034 1.49
48n No 0.55 0.29 -55 0 36 0.044 0 0.028 1.77
49e No 0.47 0.3 -55 0 12 0.24 0.0013 0.03 1.55
49n No 0.53 0.3 -55 0 24 0.098 0.00033 0.025 1.99
50e No 0.49 0.3 -55 0 9.7 0.13 0.00033 0.047 1.33
50n No 0.49 0.3 -55 0 6.3 -0.038 0.0081 0.043 1.4
51e No 0.5 0.3 -55 0 11 0.22 0.39 0.11 1.6
51n No 0.51 0.3 -55 0 9.4 -0.068 0.0059 0.055 1.36
52e No 0.53 0.29 -55 0 8.6 -0.2 0.0023 0.1 1.41
52n No 0.53 0.29 -55 0 9.6 -0.25 0.0013 0.091 1.45
53e No 0.55 0.3 -55 0 9.9 0.078 0.0033 0.048 1.46
53n No 0.56 0.3 -55 0 21 -0.14 0.00033 0.063 1.49
54e No 0.26 0.15 -55 0 49 0.52 0 0.11 1.97
54n No 0.35 0.15 -55 0 25 -0.014 0 0.075 3.14
55e No 0.29 0.13 -55 0 29 0.062 0 0.027 2.7
55n No 0.038 0.13 -55 0 2 1.9 0.023 0.48 1.12
56e No 0.57 0.27 -55 0 18 0.097 0 0.033 1.57
56n No 0.58 0.27 -55 0 5.5 0.041 0 0.029 1.43
57e No 0.57 0.27 -55 0 47 0.057 0 0.041 1.49
57n No 0.59 0.27 -55 0 13 0.098 0 0.022 1.51
58e No 0.034 0.0035 -55 1 0.7 0.49 0.035 0.12 1.11
58n No 0.034 0.0035 -55 0 0.63 0.56 0.019 0.16 1.11
59e No 0.046 0.42 -55 1 0.79 0.53 0.019 0.13 1.12
59n No 0.58 0.42 -55 0 8.7 0.13 0 0.034 1.42
60e No 0.55 0.43 -55 0 11 0.25 0.0026 0.039 1.4
60n No 0.06 0.43 -55 0 0.63 0.56 0.083 0.15 1.13
61e No 0.48 0.29 -55 0 9.9 0.32 0 0.047 1.46
61n No 0.54 0.29 -55 0 15 0.14 0 0.027 1.57
62e No 0.48 0.3 -55 0 12 0.22 0.0016 0.026 1.42
62n No 0.54 0.3 -55 0 31 0.027 0 0.031 1.61
63e No 0.5 0.37 -55 0 20 0.29 0.0026 0.048 1.54
63n No 0.045 0.37 -55 0 2.9 0.57 0.087 0.16 1.17
64e No 0.5 0.27 -55 0 17 0.22 0.0055 0.029 1.56
64n No 0.5 0.27 -55 0 13 0.12 0.00098 0.029 1.88
65e No 0.023 0.0031 -55 1 0.31 0.99 0.067 0.22 1.14
65n No 0.027 0.0031 -55 0 0.33 0.87 0.15 0.22 1.14
66e No 0.46 0.32 -55 0 1.5 0.21 0.017 0.029 1.32
66n No 0.52 0.32 -55 0 5 -0.058 0.0085 0.042 1.36
67e No 0.54 0.29 -55 0 15 0.08 0 0.039 1.39
67n No 0.54 0.29 -55 0 8.1 0.14 0.0049 0.036 1.43
68e No 0.032 0.42 -55 1 0.31 1.1 0.12 0.24 1.09
68n No 0.57 0.42 -55 0 30 0.0098 0.00033 0.023 1.54
69e No 0.56 0.28 -55 0 9 0.14 0 0.032 1.67
69n No 0.57 0.28 -55 0 4.7 0.1 0.0013 0.034 1.51
70e No 0.31 -0.25 -55 0 7 0.11 0.00033 0.031 3.95
70n No 0.3 -0.25 -55 0 4.3 0.11 0.00033 0.041 2.89
71e No 0.56 0.26 -55 0 9.8 -0.069 0 0.085 1.52
71n No 0.57 0.26 -55 0 3.1 0.1 0.00033 0.024 1.4
72e No 0.57 0.28 -55 0 6.4 0.24 0 0.038 1.52
72n No 0.51 0.28 -55 0 1.4 0.13 0.48 0.059 1.41
73e No 0.57 0.27 -55 0 13 0.13 0.00033 0.031 1.4
73n No 0.6 0.27 -55 0 12 -0.014 0 0.032 1.39
74e No 0.57 0.28 -55 0 20 0.11 0 0.031 1.41
74n No 0.59 0.28 -55 0 11 0.037 0 0.029 1.48
77e No 0.27 0.2 -55 0 20 2 0.0039 0.47 1.59
77n No 0.41 0.2 -55 0 21 0.89 0.0013 0.24 2.36
78e No 0.36 0.3 -55 0 19 1.2 0.002 0.32 2.72
78n No 0.54 0.3 -55 0 34 0.011 0 0.029 1.78
79e No 0.5 0.38 -55 0 14 0.3 0.0013 0.041 1.67
79n No 0.04 0.38 -55 0 2.9 0.58 0.0098 0.16 1.15
80e No 0.52 0.38 -55 0 23 0.18 0.0023 0.019 1.58
80n No 0.058 0.38 -55 0 2.9 0.61 0.042 0.17 1.16
81e No 0.46 0.31 -55 0 3.9 -0.0088 0.0039 0.05 1.33
81n No 0.029 0.31 -55 1 0.46 0.62 0.089 0.18 1.16
82e No 0.5 0.28 -55 0 5.4 -0.042 0 0.087 1.34
82n No 0.51 0.28 -55 0 3.4 -0.18 0.0091 0.065 1.35
83e No 0.51 0.28 -55 0 3.8 -0.019 0 0.054 1.35
83n No 0.53 0.28 -55 0 3.8 -0.027 0.0059 0.036 1.42
84e No 0.15 0.092 -55 1 0.32 0.84 0.12 0.23 1.15
84n No 0.033 0.092 -55 0 0.28 0.93 0.12 0.27 1.1
85e No 0.56 0.28 -55 0 16 0.04 0 0.04 1.5
85n No 0.58 0.28 -55 0 15 -0.0016 0.00065 0.034 1.47
86e No 0.56 0.27 -55 0 12 0.057 0.017 0.08 1.52
86n No 0.59 0.27 -55 0 13 -0.054 0.0013 0.042 1.47
87e No 0.57 0.27 -55 0 11 -0.06 0.00033 0.094 1.53
87n No 0.6 0.27 -55 0 10 -0.32 0.0029 0.12 1.45
88e No 0.56 0.26 -55 0 8.4 0.088 0.0013 0.037 1.45
88n No 0.58 0.26 -55 0 8 -0.046 0.00065 0.036 1.45
89e No 0.56 0.27 -55 0 8.9 0.074 0 0.043 1.48
89n No 0.59 0.27 -55 0 8 -0.024 0 0.033 1.51
90e No 0.56 0.28 -55 0 13 0.075 0.002 0.039 1.45
90n No 0.59 0.28 -55 0 21 -0.0011 0.0013 0.02 1.5
91e No 0.53 0.28 -55 0 8.2 0.15 0.00033 0.03 1.44
91n No 0.57 0.28 -55 0 9.2 0.017 0 0.03 1.55
92e No 0.035 0.36 -55 0 0.7 0.51 0.018 0.12 1.13
92n No 0.57 0.36 -55 0 9.3 -0.025 0.00065 0.027 1.51
93e No 0.029 0.0016 -55 0 0.68 0.53 0.076 0.12 1.12
93n No 0.025 0.0016 -55 0 0.62 0.57 0.043 0.16 1.12
94e No 0.026 0.001 -55 0 0.66 0.56 0.023 0.13 1.11
94n No 0.025 0.001 -55 0 0.65 0.58 0.02 0.16 1.12
95e No 0.3 0.13 -55 0 20 0.41 0 0.083 2.78
95n No 0.31 0.13 -55 0 32 0.077 0 0.049 2.98
96e No 0.51 0.27 -55 0 58 0.069 0 0.062 1.6
96n No 0.42 0.27 -55 0 39 0.64 0 0.2 3.39
97e No 0.49 0.28 -55 0 17 0.18 0.0023 0.016 1.43
97n No 0.47 0.28 -55 0 9.1 0.26 0.02 0.063 1.61
101e No 0.55 0.28 -55 0 10 -0.25 0.00033 0.11 1.44
101n No 0.57 0.28 -55 0 7.2 -0.32 0.0052 0.11 1.4
102e No 0.55 0.28 -55 0 17 0.18 0 0.029 1.42
102n No 0.58 0.28 -55 0 15 0.078 0.00065 0.039 1.41
103e No 0.46 0.29 -55 0 1.2 0.35 0.021 0.058 1.38
103n No 0.58 0.29 -55 0 13 -0.12 0.055 0.073 1.68
104e No 0.56 0.26 -55 0 12 -0.085 0.00065 0.075 1.48
104n No 0.56 0.26 -55 0 1.6 1.9 0.0039 0.52 1.56
105e No 0.56 0.26 -55 0 9 0.12 0 0.037 1.51
105n No 0.58 0.26 -55 0 7.9 -0.025 0.002 0.033 1.55
106e No 0.56 0.27 -55 0 12 0.043 0.0036 0.046 1.57
106n No 0.59 0.27 -55 0 11 -0.092 0 0.047 1.64
107e No 0.55 0.27 -55 0 11 0.26 0.00065 0.047 1.56
107n No 0.58 0.27 -55 0 14 -0.0042 0.0059 0.038 1.76
108e No 0.034 0.16 -55 1 0.7 0.52 0.055 0.12 1.12
108n No 0.31 0.16 -55 0 11 1.4 0.0013 0.41 2.76
109e No 0.055 0.013 -55 0 0.69 0.51 0.018 0.12 1.14
109n No 0.034 0.013 -55 0 0.67 0.56 0.057 0.15 1.14
110e No 0.52 0.27 -55 0 2.2 0.23 0 0.04 1.35
110n No 0.52 0.27 -55 0 11 0.53 0 0.13 1.6
111e No 0.4 0.27 -55 0 7.9 1.2 0 0.31 1.86
111n No 0.054 0.27 -55 0 0.65 0.56 0.05 0.16 1.12
112e No 0.2 -0.062 -55 0 1.4 0.26 0 0.047 1.88
112n No 0.068 -0.062 -55 0 0.64 0.55 0.017 0.16 1.16
113e No 0.033 0.00063 -55 0 3.2 0.59 0.038 0.13 1.13
113n No 0.03 0.00063 -55 0 2.9 0.6 0.024 0.16 1.14
114e No 0.042 0.37 -55 0 3.1 0.61 0.031 0.14 1.14
114n No 0.51 0.37 -55 0 23 0.052 0.0081 0.031 1.51
115e No 0.47 0.3 -55 0 16 0.22 0.0026 0.021 1.35
115n No 0.5 0.3 -55 0 24 0.054 0.00033 0.021 1.57
117e No 0.028 0.0017 -55 1 0.68 0.55 0.026 0.13 1.17
117n No 0.031 0.0017 -55 0 0.58 0.62 0.092 0.17 1.16
118e No 0.52 0.29 -55 0 9.5 0.17 0.00033 0.041 1.43
118n No 0.54 0.29 -55 0 8.7 0.028 0.0078 0.05 1.41
120e No 0.54 0.28 -55 1 4.6 0.16 0 0.074 1.43
120n No 0.58 0.28 -55 0 13 -0.043 0.0026 0.059 1.47
121e No 0.56 0.26 -55 0 13 0.21 0.0065 0.054 1.44
121n No 0.55 0.26 -55 0 2 -0.12 0.0088 0.056 1.44
122e No 0.56 0.27 -55 0 14 -0.17 0 0.11 1.55
122n No 0.59 0.27 -55 0 15 -0.29 0 0.1 1.48
123e No 0.57 0.27 -55 0 7.5 -0.18 0 0.1 1.44
123n No 0.59 0.27 -55 0 7.4 -0.34 0.0033 0.12 1.47
124e No 0.04 0.37 -55 0 0.65 0.52 0.019 0.12 1.12
124n No 0.58 0.37 -55 0 8.4 0.12 0.00033 0.037 1.58
125e No 0.55 0.27 -55 0 7.6 0.12 0 0.032 1.7
125n No 0.57 0.27 -55 0 7.9 0.025 0.015 0.052 1.77
126e No 0.55 0.27 -55 0 12 0.025 0.00033 0.045 1.45
126n No 0.57 0.27 -55 0 7.7 -0.063 0.0013 0.034 1.62
127e No 0.031 0.34 -55 0 0.7 0.5 0.017 0.12 1.13
127n No 0.56 0.34 -55 0 5.1 0.039 0.002 0.027 1.54
128e No 0.55 0.3 -55 0 16 0.11 0.00065 0.032 1.37
128n No 0.56 0.3 -55 0 25 0.081 0.00033 0.025 1.5
131e No 0.5 0.34 -55 0 21 0.2 0.00065 0.018 1.53
131n No 0.19 0.34 -55 0 2.9 0.56 0.0033 0.15 1.22
132e No 0.49 0.29 -55 0 20 0.18 0.0072 0.015 1.4
132n No 0.5 0.29 -55 0 15 0.13 0.00065 0.031 1.44
133e No 0.46 0.3 -55 0 15 0.3 0.0059 0.043 1.31
133n No 0.5 0.3 -55 0 21 0.073 0.0016 0.011 1.47
134e No 0.041 0.0047 -55 0 3.1 0.55 0.022 0.13 1.17
134n No 0.036 0.0047 -55 0 2.9 0.6 0.023 0.16 1.17
135e No 0.49 0.33 -55 0 14 0.27 0.0033 0.098 1.6
135n No 0.53 0.33 -55 0 16 0.047 0.0065 0.022 1.7
136e No 0.036 0.37 -55 0 0.76 0.48 0.036 0.12 1.2
136n No 0.51 0.37 -55 0 12 0.19 0.0049 0.06 1.5
137e No 0.5 0.3 -55 0 3.9 0.044 0.0026 0.043 1.46
137n No 0.54 0.3 -55 0 6.7 -0.14 0.0052 0.056 1.4
139e No 0.53 0.27 -55 0 32 0.11 0 0.035 1.59
139n No 0.54 0.27 -55 0 18 0.18 0.002 0.047 1.56
140e No 0.55 0.28 -55 0 12 0.19 0.00098 0.046 1.53
140n No 0.58 0.28 -55 0 22 0.011 0 0.017 1.49
141e No 0.55 0.27 -55 0 10 0.17 0.00033 0.028 1.53
141n No 0.59 0.27 -55 0 27 0.012 0 0.012 1.48
142e No 0.55 0.45 -55 0 11 0.14 0.00033 0.047 1.52
142n No 0.043 0.45 -55 0 0.63 0.56 0.036 0.15 1.15
143e No 0.085 0.041 -55 0 0.73 0.56 0.018 0.13 1.23
143n No 0.029 0.041 -55 0 0.63 0.56 0.033 0.16 1.12
144e No 0.56 0.26 -55 0 13 0.11 0.00098 0.039 1.59
144n No 0.56 0.26 -55 0 4.1 0.047 0.0075 0.028 1.6
145e No 0.54 0.29 -55 0 5.9 0.14 0 0.031 1.55
145n No 0.58 0.29 -55 0 31 0.04 0 0.017 1.68
146e No 0.52 0.27 -55 0 17 0.24 0 0.03 1.55
146n No 0.55 0.27 -55 0 19 0.12 0.00033 0.025 1.64
147e Yes -55 1.5E+03 0 0 0 INF 0
147n Yes -55 1.5E+03 0 0 0 INF 0
148e Yes -55 1.5E+03 0 0 0 INF 0
148n Yes -55 1.5E+03 0 0 0 INF 0
149e Yes -55 1.5E+03 0 0 0 INF 0
149n Yes -55 1.5E+03 0 0 0 INF 0
150e Yes -55 1.5E+03 0 0 0 INF 0
150n Yes -55 1.5E+03 0 0 0 INF 0
151e No 0.36 0.27 -55 0 20 0.93 0.0023 0.24 2.38
151n No 0.47 0.27 -55 0 8.9 0.15 0.00033 0.037 1.4
155e No 0.037 0.4 -55 0 0.73 0.49 0.061 0.12 1.25
155n No 0.54 0.4 -55 0 13 -0.0052 0.022 0.021 1.43
156e No 0.34 0.26 -55 0 1.1 0.32 0.028 0.064 1.38
156n No 0.037 0.26 -55 0 0.66 0.55 0.062 0.15 1.26
157e No 0.53 0.3 -55 0 9 0.11 0.0072 0.034 1.41
157n No 0.56 0.3 -55 0 8 0.034 0.0065 0.023 1.45
158e No 0.54 0.3 -55 0 9.8 0.12 0.0055 0.042 1.47
158n No 0.57 0.3 -55 0 11 0.051 0.054 0.03 1.96
159e No 0.51 0.26 -55 0 13 0.22 0 0.033 1.61
159n No 0.41 0.26 -55 0 14 0.96 0.0033 0.27 2.49
160e No 0.55 0.29 -55 0 10 0.071 0.0036 0.033 1.56
160n No 0.58 0.29 -55 0 12 0.031 0.0013 0.023 1.49
161e No 0.55 0.26 -55 0 9 0.15 0 0.026 1.54
161n No 0.45 0.26 -55 0 13 0.98 0.00098 0.27 2.88
162e No 0.55 0.28 -55 0 21 0.19 0 0.02 1.69
162n No 0.58 0.28 -55 0 17 0.028 0.00033 0.017 1.59
163e No 0.56 0.29 -55 0 9.5 0.046 0 0.032 1.5
163n No 0.58 0.29 -55 0 8.8 -0.075 0.00098 0.04 1.56
164e No 0.56 0.28 -55 0 10 0.17 0.00065 0.027 1.6
164n No 0.57 0.28 -55 0 7 -0.018 0 0.032 1.69
165e No 0.42 0.29 -55 0 12 1.1 0.00033 0.29 3.31
165n No 0.57 0.29 -55 0 12 -0.013 0.00065 0.026 1.66
166e No 0.54 0.28 -55 0 8 0.14 0.00033 0.023 1.54
166n No 0.56 0.28 -55 0 29 0.042 0.00065 0.023 1.6
167e Yes -55 1.5E+03 0 0 0 INF 0
167n Yes -55 1.5E+03 0 0 0 INF 0
168e Yes -55 1.5E+03 0 0 0 INF 0
168n Yes -55 1.5E+03 0 0 0 INF 0
169e Yes -55 1.5E+03 0 0 0 INF 0
169n Yes -55 1.5E+03 0 0 0 INF 0
170e Yes -55 1.5E+03 0 0 0 INF 0
170n Yes -55 1.5E+03 0 0 0 INF 0
171e No 0.46 0.27 -55 0 15 0.18 0 0.031 1.39
171n No 0.46 0.27 -55 0 11 0.16 0.002 0.041 1.35
173e No 0.033 0.0023 -55 0 3.5 0.6 0.13 0.13 1.15
173n No 0.04 0.0023 -55 0 3.2 0.58 0.06 0.16 1.17
179e No 0.52 0.3 -55 0 10 0.35 0.00098 0.058 1.49
179n No 0.56 0.3 -55 0 9.3 0.081 0.0059 0.028 1.38
180e No 0.55 0.45 -55 0 14 0.17 0.00065 0.029 1.53
180n No 0.05 0.45 -55 0 0.61 0.59 0.062 0.16 1.32
181e No 0.55 0.3 -55 0 7.1 0.12 0.00033 0.038 1.51
181n No 0.57 0.3 -55 0 8.6 0.073 0.0029 0.027 1.49
182e No 0.56 0.4 -55 0 20 0.12 0.0029 0.036 1.6
182n No 0.043 0.4 -55 1 0.67 0.55 0.028 0.15 1.2
183e No 0.53 0.28 -55 0 8.7 0.1 0.00098 0.025 1.54
183n No 0.56 0.28 -55 0 8.3 0.02 0.0059 0.023 1.48
184e No 0.36 0.32 -55 0 1.7 0.92 0.015 0.21 1.8
184n No 0.57 0.32 -55 0 13 -0.009 0.00065 0.027 1.6
185e No 0.52 0.3 -55 0 59 0.085 0 0.061 1.47
185n No 0.57 0.3 -55 0 30 0.0099 0 0.017 1.57
186e No 0.55 0.29 -55 0 24 0.11 0 0.016 1.54
186n No 0.56 0.29 -55 0 21 0.011 0.00033 0.023 1.53
187e No 0.54 0.29 -55 0 14 0.26 0.00098 0.043 1.46
187n No 0.55 0.29 -55 0 22 0.046 0 0.02 1.58
189e Yes -55 1.5E+03 0 0 0 INF 0
189n Yes -55 1.5E+03 0 0 0 INF 0
190e Yes -55 1.5E+03 0 0 0 INF 0
190n Yes -55 1.5E+03 0 0 0 INF 0
191e Yes -55 1.5E+03 0 0 0 INF 0
191n Yes -55 1.5E+03 0 0 0 INF 0
192e No 0.48 0.3 -55 0 43 0.13 0.0026 0.03 1.3
192n No 0.45 0.3 -55 0 80 0.016 0 0.1 1.53
193e No 0.45 0.31 -55 0 79 0.022 0 0.1 1.56
193n No 0.48 0.31 -55 0 36 0.058 0.00033 0.027 1.31
200e No 0.041 0.13 -55 0 3.1 0.58 0.06 0.13 1.16
200n No 0.2 0.13 -55 0 20 1.4 0.0046 0.38 1.61
201e No 0.52 0.29 -55 0 49 0.12 0 0.041 1.43
201n No 0.54 0.29 -55 0 68 0.0095 0 0.08 1.61
202e No 0.54 0.28 -55 0 33 0.15 0 0.019 1.42
202n No 0.53 0.28 -55 0 16 0.19 0.093 0.041 1.67
204e No 0.54 0.3 -55 0 6.8 -0.18 0.00098 0.11 1.72
204n No 0.56 0.3 -55 0 15 -0.45 0 0.15 1.87
205e No 0.28 0.36 -55 0 4.5 0.5 0.0091 0.11 1.31
205n No 0.53 0.36 -55 0 20 0.13 0.092 0.024 1.79
206e No 0.47 0.27 -55 0 11 0.25 0.0036 0.036 1.52
206n No 0.41 0.27 -55 0 5.5 0.34 0.0075 0.087 1.45
207e No 0.5 0.27 -55 0 18 0.21 0.00065 0.017 1.37
207n No 0.5 0.27 -55 0 13 0.2 0.00065 0.043 1.46
208e Yes -55 1.5E+03 0 0 0 INF 0
208n Yes -55 1.5E+03 0 0 0 INF 0
209e Yes -55 1.5E+03 0 0 0 INF 0
209n Yes -55 1.5E+03 0 0 0 INF 0
210e Yes -55 1.5E+03 0 0 0 INF 0
210n Yes -55 1.5E+03 0 0 0 INF 0
211e No 0.46 0.37 -55 0 15 0.26 0.0013 0.032 1.28
211n No 0.039 0.37 -55 0 2.8 0.58 0.045 0.16 1.16
220e No 0.52 0.29 -55 0 24 0.17 0.0065 0.015 1.35
220n No 0.53 0.29 -55 0 21 0.052 0.00065 0.02 1.41
221e No 0.5 0.29 -55 0 16 0.25 0.00033 0.033 1.36
221n No 0.53 0.29 -55 0 19 0.11 0.00065 0.021 1.42
222e No 0.51 0.29 -55 0 21 0.24 0 0.031 1.39
222n No 0.54 0.29 -55 0 24 0.081 0 0.025 1.41
223e No 0.5 0.29 -55 0 14 0.17 0 0.018 1.38
223n No 0.53 0.29 -55 0 22 0.0061 0 0.02 1.39
224e No 0.47 0.28 -55 0 83 0.022 0 0.11 1.73
224n No 0.5 0.28 -55 0 78 0.0099 0 0.097 1.7
225e No 0.51 0.4 -55 0 26 0.14 0 0.0086 1.46
225n No 0.11 0.4 -55 0 3.1 0.57 0.056 0.15 1.22
226e No 0.49 0.27 -55 0 18 0.12 0.00033 0.021 1.37
226n No 0.4 0.27 -55 0 29 0.76 0.00033 0.22 2.44
227e No 0.37 0.3 -55 0 6 0.37 0.0039 0.067 1.31
227n No 0.47 0.3 -55 0 12 0.18 0 0.042 1.4
228e No 0.48 0.28 -55 0 28 0.16 0 0.019 1.33
228n No 0.47 0.28 -55 0 15 0.12 0 0.033 1.38
229e No 0.47 0.31 -55 0 28 0.18 0 0.016 1.29
229n No 0.48 0.31 -55 0 34 0.016 0 0.025 1.32
237e No 0.45 0.3 -55 0 9.7 0.32 0.0023 0.046 1.28
237n No 0.51 0.3 -55 0 16 0.11 0.0013 0.026 1.31
238e No 0.51 0.3 -55 0 27 0.12 0 0.027 1.3
238n No 0.53 0.3 -55 0 26 0.11 0 0.021 1.33
239e No 0.5 0.29 -55 0 21 0.15 0 0.015 1.31
239n No 0.52 0.29 -55 0 21 0.054 0.00033 0.011 1.32
240e No 0.44 0.31 -55 0 9.9 0.36 0.0042 0.061 1.31
240n No 0.52 0.31 -55 0 18 0.12 0 0.024 1.32
241e No 0.49 0.3 -55 0 20 0.2 0.00033 0.016 1.31
241n No 0.52 0.3 -55 0 24 0.02 0 0.014 1.35
242e No 0.35 0.3 -55 0 24 0.88 0 0.23 2.24
242n No 0.51 0.3 -55 0 36 0.035 0.00033 0.032 1.37
243e No 0.37 0.3 -55 0 31 0.84 0 0.21 2.28
243n No 0.49 0.3 -55 0 16 0.085 0 0.015 1.43
244e No 0.45 0.3 -55 0 12 0.32 0.0085 0.052 1.38
244n No 0.49 0.3 -55 0 17 0.11 0 0.019 1.39
245e No 0.48 0.29 -55 0 29 0.17 0 0.02 1.32
245n No 0.48 0.29 -55 0 20 0.14 0 0.028 1.38
246e No 0.45 0.38 -55 0 17 0.21 0 0.026 1.35
246n No 0.037 0.38 -55 0 3.2 0.59 0.023 0.17 1.19
261e No 0.47 0.3 -55 0 22 0.15 0.00065 0.015 1.41
261n No 0.47 0.3 -55 0 22 0.076 0.00033 0.02 1.4
262e No 0.44 0.3 -55 0 2.3 -0.23 0.00098 0.12 1.53
262n No 0.45 0.3 -55 0 2.5 -0.44 0 0.15 1.45
320e No 0.43 0.31 -55 0 42 0.04 0.00098 0.049 -
320n No 0.42 0.31 -55 0 33 -0.062 0.00065 0.045 -
324e No 0.4 0.29 -55 0 30 0.16 0.00098 0.037 -
324n No 0.4 0.29 -55 0 35 0.019 0.00065 0.047 -
325e No 0.43 0.3 -55 0 29 0.13 0.0023 0.023 -
325n No 0.41 0.3 -55 1 16 0.064 0.0026 0.022 -
329e No 0.4 0.29 -55 0 17 0.3 0.041 0.05 -
329n No 0.4 0.29 -55 0 17 0.065 0.0072 0.026 -
333e No 0.37 0.28 -55 0 12 0.32 0.019 0.059 -
333n No 0.39 0.28 -55 0 15 0.15 0.0033 0.04 -
In [46]:
# Save antenna classification table as a csv
if SAVE_RESULTS:
    for ind, col in zip(np.arange(len(df.columns), 0, -1), df_classes.columns[::-1]):
        df.insert(int(ind), col + ' Class', df_classes[col])
    df.to_csv(ANTCLASS_FILE)    
In [47]:
print('Final Ant-Pol Classification:\n\n', final_class)
Final Ant-Pol Classification:

 Jee:
----------
good (102 antpols):
3, 7, 8, 10, 17, 19, 21, 30, 31, 35, 36, 37, 38, 41, 43, 44, 45, 46, 48, 49, 50, 53, 56, 60, 61, 62, 63, 64, 67, 69, 71, 72, 73, 74, 79, 80, 82, 85, 87, 88, 89, 90, 91, 97, 102, 104, 105, 106, 107, 115, 118, 121, 125, 126, 128, 131, 132, 133, 135, 140, 141, 142, 144, 145, 146, 157, 158, 159, 160, 161, 162, 163, 164, 166, 171, 179, 180, 181, 182, 183, 186, 187, 206, 207, 211, 220, 221, 222, 223, 225, 226, 228, 229, 237, 238, 239, 240, 241, 244, 245, 246, 261

suspect (34 antpols):
4, 9, 16, 20, 29, 40, 52, 54, 55, 57, 66, 81, 83, 86, 95, 96, 101, 103, 110, 112, 120, 122, 123, 137, 139, 156, 185, 192, 201, 202, 204, 205, 227, 262

bad (62 antpols):
5, 15, 18, 22, 27, 28, 32, 34, 42, 47, 51, 58, 59, 65, 68, 70, 77, 78, 84, 92, 93, 94, 108, 109, 111, 113, 114, 117, 124, 127, 134, 136, 143, 147, 148, 149, 150, 151, 155, 165, 167, 168, 169, 170, 173, 184, 189, 190, 191, 193, 200, 208, 209, 210, 224, 242, 243, 320, 324, 325, 329, 333


Jnn:
----------
good (95 antpols):
7, 8, 9, 10, 15, 19, 20, 21, 29, 30, 31, 35, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 53, 56, 57, 59, 61, 64, 66, 67, 68, 73, 74, 85, 86, 88, 89, 90, 91, 92, 102, 105, 106, 107, 114, 115, 118, 120, 124, 125, 126, 127, 128, 132, 133, 135, 136, 137, 139, 140, 141, 146, 151, 157, 160, 162, 163, 164, 165, 166, 171, 179, 181, 183, 184, 185, 186, 187, 206, 207, 220, 221, 222, 223, 227, 228, 237, 238, 239, 240, 241, 243, 244, 245, 261

suspect (26 antpols):
4, 36, 38, 48, 62, 69, 71, 78, 82, 83, 87, 95, 97, 101, 110, 121, 122, 123, 144, 145, 155, 193, 204, 229, 242, 262

bad (77 antpols):
3, 5, 16, 17, 18, 22, 27, 28, 32, 34, 37, 42, 47, 54, 55, 58, 60, 63, 65, 70, 72, 77, 79, 80, 81, 84, 93, 94, 96, 103, 104, 108, 109, 111, 112, 113, 117, 131, 134, 142, 143, 147, 148, 149, 150, 156, 158, 159, 161, 167, 168, 169, 170, 173, 180, 182, 189, 190, 191, 192, 200, 201, 202, 205, 208, 209, 210, 211, 224, 225, 226, 246, 320, 324, 325, 329, 333

Save calibration solutions¶

In [48]:
# update flags in omnical gains and visibility solutions
for ant in omni_flags:
    omni_flags[ant] |= rfi_flags
for bl in vissol_flags:
    vissol_flags[bl] |= rfi_flags
In [49]:
if SAVE_RESULTS:
    add_to_history = 'Produced by file_calibration notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65    
    
    hd_vissol = io.HERAData(SUM_FILE)
    hc_omni = hd_vissol.init_HERACal(gain_convention='divide', cal_style='redundant')
    hc_omni.update(gains=sol.gains, flags=omni_flags, quals=meta['chisq_per_ant'], total_qual=meta['chisq'])
    hc_omni.history += add_to_history
    hc_omni.write_calfits(OMNICAL_FILE, clobber=True)
    del hc_omni
    malloc_trim()
    
    # output results, harmonizing keys over polarizations
    all_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol')
    bl_to_red_map = {bl: red[0] for red in all_reds for bl in red}
    hd_vissol.read(bls=[bl_to_red_map[bl] for bl in sol.vis], return_data=False)
    hd_vissol.empty_arrays()
    hd_vissol.history += add_to_history
    hd_vissol.update(data={bl_to_red_map[bl]: sol.vis[bl] for bl in sol.vis}, 
                     flags={bl_to_red_map[bl]: vissol_flags[bl] for bl in vissol_flags}, 
                     nsamples={bl_to_red_map[bl]: vissol_nsamples[bl] for bl in vissol_nsamples})
    hd_vissol.write_uvh5(OMNIVIS_FILE, clobber=True)
    del hd_vissol
    malloc_trim()    

Output fully flagged calibration file if OMNICAL_FILE is not written¶

In [50]:
if SAVE_RESULTS and not os.path.exists(OMNICAL_FILE):
    print(f'WARNING: No calibration file produced at {OMNICAL_FILE}. Creating a fully-flagged placeholder calibration file.')
    hd_writer = io.HERAData(SUM_FILE)
    io.write_cal(OMNICAL_FILE, freqs=hd_writer.freqs, times=hd_writer.times,
                 gains={ant: np.ones((hd_writer.Ntimes, hd_writer.Nfreqs), dtype=np.complex64) for ant in ants},
                 flags={ant: np.ones((len(data.times), len(data.freqs)), dtype=bool) for ant in ants},
                 quality=None, total_qual=None, outdir='', overwrite=True, history=utils.history_string(add_to_history), 
                 x_orientation=hd_writer.x_orientation, telescope_location=hd_writer.telescope_location, lst_array=np.unique(hd_writer.lsts),
                 antenna_positions=np.array([hd_writer.antenna_positions[hd_writer.antenna_numbers == antnum].flatten() for antnum in set(ant[0] for ant in ants)]),
                 antnums2antnames=dict(zip(hd_writer.antenna_numbers, hd_writer.antenna_names)))

Output empty visibility file if OMNIVIS_FILE is not written¶

In [51]:
if SAVE_RESULTS and not os.path.exists(OMNIVIS_FILE):
    print(f'WARNING: No omnivis file produced at {OMNIVIS_FILE}. Creating an empty visibility solution file.')
    hd_writer = io.HERAData(SUM_FILE)
    hd_writer.initialize_uvh5_file(OMNIVIS_FILE, clobber=True)

TODO: Perform nucal¶

Metadata¶

In [52]:
for repo in ['hera_cal', 'hera_qm', 'hera_notebook_templates']:
    exec(f'from {repo} import __version__')
    print(f'{repo}: {__version__}')
hera_cal: 3.2.3.dev121+gc95c57f
hera_qm: 2.0.5.dev13+gd6c757c
hera_notebook_templates: 0.1.dev486+gfb8560a
In [53]:
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 8.67 minutes.