Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1756 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460348/zen.2460348.25456.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1756 *.sum.smooth.calfits files starting with /mnt/sn1/2460348/zen.2460348.25456.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
22.656% of waterfall flagged to start. 23.868% of waterfall flagged after flagging z > 5.0 outliers. 24.105% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 3 channels. Flagging 28 channels previously flagged 25.00% or more. Flagging 9 times previously flagged 10.00% or more. Flagging an additional 2 integrations and 18 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 26.534% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1756 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460348/zen.2460348.25456.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460348/2460348_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460348.2575840633, 2460348.2576959115], [2460348.2578077596, 2460348.258143304], [2460348.2602684177, 2460348.26071581], [2460348.260827658, 2460348.2609395063], [2460348.2610513545, 2460348.2611632026], [2460348.2630646206, 2460348.2631764687], [2460348.2664200636, 2460348.2665319117], [2460348.270222899, 2460348.2705584434], [2460348.2706702915, 2460348.2708939877], [2460348.2736901906, 2460348.274025735], [2460348.274137583, 2460348.2743612793], [2460348.27726933, 2460348.277493026], [2460348.282638039, 2460348.2829735833], [2460348.285769786, 2460348.2859934825], [2460348.2976256856, 2460348.2977375337], [2460348.301428521, 2460348.3016522173], [2460348.3017640654, 2460348.3020996097], [2460348.3081394075, 2460348.308363104], [2460348.308474952, 2460348.308698648], [2460348.3088104962, 2460348.3089223444], [2460348.310152673, 2460348.3103763694], [2460348.3113830024, 2460348.3116066987], [2460348.3123896355, 2460348.3125014836], [2460348.3145147497, 2460348.314626598], [2460348.314738446, 2460348.314962142], [2460348.3177583446, 2460348.3178701927], [2460348.3221204206, 2460348.3227915093], [2460348.323238902, 2460348.32335075], [2460348.323462598, 2460348.323574446], [2460348.3365488267, 2460348.336660675], [2460348.3419175358, 2460348.342029384], [2460348.3442663457, 2460348.344378194], [2460348.3505298398, 2460348.350641688], [2460348.352766802, 2460348.3529904983], [2460348.356010397, 2460348.356122245], [2460348.3564577894, 2460348.3565696375], [2460348.3709980436, 2460348.3711098917], [2460348.373682398, 2460348.373794246], [2460348.374577183, 2460348.374800879], [2460348.37591936, 2460348.3760312083], [2460348.3793866513, 2460348.3794984994], [2460348.3829657906, 2460348.3830776387], [2460348.3937032092, 2460348.394038753], [2460348.395045386, 2460348.3951572343], [2460348.4077960704, 2460348.408131615], [2460348.4105922733, 2460348.410815969], [2460348.4121581465, 2460348.4123818427], [2460348.4319552616, 2460348.432178958], [2460348.46394382, 2460348.464055668], [2460348.4792670105, 2460348.4793788586], [2460348.485083112, 2460348.4853068083], [2460348.517742759, 2460348.517854607], [2460348.521321899, 2460348.521433747], [2460348.5332896463, 2460348.5334014944], [2460348.5510734953, 2460348.5511853434], [2460348.5519682798, 2460348.552080128], [2460348.554093394, 2460348.55431709], [2460348.558343622, 2460348.55845547], [2460348.558567318, 2460348.5587910144], [2460348.5620346097, 2460348.562146458], [2460348.576015623, 2460348.576127471], [2460348.5799303064, 2460348.5801540026], [2460348.5808250913, 2460348.5809369395], [2460348.5811606357, 2460348.581272484], [2460348.583509446, 2460348.5836212942], [2460348.590444029, 2460348.590555877], [2460348.592904687, 2460348.593016535], [2460348.603642105, 2460348.6038658014], [2460348.611695169, 2460348.6119188652], [2460348.614826916, 2460348.615050612], [2460348.618965296, 2460348.619077144], [2460348.6209785617, 2460348.62109041], [2460348.6235510684, 2460348.623998461], [2460348.6244458533, 2460348.6246695495], [2460348.6468154746, 2460348.6469273227], [2460348.647486563, 2460348.647598411]] freq_flags: [[49911499.0234375, 50277709.9609375], [53695678.7109375, 53817749.0234375], [54916381.8359375, 55160522.4609375], [55648803.7109375, 56015014.6484375], [56503295.8984375, 56747436.5234375], [57357788.0859375, 57723999.0234375], [58212280.2734375, 58456420.8984375], [62240600.5859375, 63217163.0859375], [65902709.9609375, 67245483.3984375], [69931030.2734375, 70053100.5859375], [71151733.3984375, 71273803.7109375], [73837280.2734375, 74935913.0859375], [77865600.5859375, 77987670.8984375], [81283569.3359375, 81527709.9609375], [84945678.7109375, 85067749.0234375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112533569.3359375, 112777709.9609375], [112899780.2734375, 113021850.5859375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116317749.0234375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [121322631.8359375, 121810913.0859375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [144882202.1484375, 145004272.4609375], [145492553.7109375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148300170.8984375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [158187866.2109375, 158309936.5234375], [159164428.7109375, 159286499.0234375], [160263061.5234375, 160385131.8359375], [161361694.3359375, 161483764.6484375], [168563842.7734375, 168685913.0859375], [169662475.5859375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175033569.3359375, 175277709.9609375], [181137084.9609375, 181381225.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [190292358.3984375, 190536499.0234375], [191024780.2734375, 191635131.8359375], [193222045.8984375, 193344116.2109375], [195663452.1484375, 195785522.4609375], [196151733.3984375, 196273803.7109375], [196395874.0234375, 196517944.3359375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199081420.8984375, 199325561.5234375], [199813842.7734375, 199935913.0859375], [200057983.3984375, 200180053.7109375], [200790405.2734375, 200912475.5859375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [222885131.8359375, 223617553.7109375], [225692749.0234375, 225814819.3359375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jee], [3, Jnn], [4, Jee], [5, Jee], [7, Jee], [10, Jee], [15, Jee], [16, Jee], [17, Jee], [18, Jee], [18, Jnn], [19, Jee], [20, Jee], [21, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jee], [30, Jee], [31, Jnn], [32, Jee], [32, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [37, Jee], [37, Jnn], [40, Jee], [40, Jnn], [41, Jee], [45, Jee], [46, Jee], [47, Jee], [51, Jee], [54, Jee], [56, Jee], [61, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jee], [68, Jnn], [72, Jee], [73, Jee], [73, Jnn], [78, Jee], [78, Jnn], [79, Jee], [81, Jee], [81, Jnn], [82, Jee], [83, Jee], [83, Jnn], [85, Jee], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [89, Jee], [89, Jnn], [90, Jee], [92, Jee], [93, Jee], [93, Jnn], [94, Jee], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [100, Jee], [102, Jee], [103, Jnn], [104, Jnn], [106, Jee], [107, Jee], [108, Jee], [109, Jee], [109, Jnn], [110, Jee], [111, Jee], [112, Jee], [114, Jnn], [115, Jee], [115, Jnn], [117, Jee], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [123, Jee], [124, Jee], [125, Jee], [127, Jee], [127, Jnn], [136, Jnn], [137, Jee], [140, Jee], [145, Jee], [146, Jee], [146, Jnn], [148, Jee], [160, Jee], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [176, Jee], [177, Jee], [180, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [189, Jee], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [204, Jee], [204, Jnn], [205, Jee], [205, Jnn], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [218, Jnn], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [295, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 19.07 minutes.