Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1756 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460349/zen.2460349.25473.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1756 *.sum.smooth.calfits files starting with /mnt/sn1/2460349/zen.2460349.25473.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
25.331% of waterfall flagged to start. 26.461% of waterfall flagged after flagging z > 5.0 outliers. 26.712% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 276 integrations and 20 channels. Flagging 21 channels previously flagged 25.00% or more. Flagging 18 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 2 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 34.966% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1756 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460349/zen.2460349.25473.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460349/2460349_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460349.2555131344, 2460349.2556249825], [2460349.2558486788, 2460349.255960527], [2460349.256072375, 2460349.256296071], [2460349.2567434637, 2460349.25696716], [2460349.2577500967, 2460349.257973793], [2460349.2583093373, 2460349.25875673], [2460349.259763363, 2460349.259987059], [2460349.2608818435, 2460349.261217388], [2460349.261552932, 2460349.2616647803], [2460349.2617766284, 2460349.2620003247], [2460349.2628951096, 2460349.2637898945], [2460349.2640135908, 2460349.264237287], [2460349.265355768, 2460349.266697945], [2460349.2669216413, 2460349.2671453375], [2460349.2672571857, 2460349.267369034], [2460349.268375667, 2460349.268487515], [2460349.268599363, 2460349.2691586036], [2460349.27586949, 2460349.275981338], [2460349.2763168826, 2460349.2764287307], [2460349.2776590595, 2460349.2782183], [2460349.2785538444, 2460349.2786656925], [2460349.2793367812, 2460349.279896022], [2460349.280119718, 2460349.280231566], [2460349.281909288, 2460349.2822448323], [2460349.2849291866, 2460349.2850410347], [2460349.2928704023, 2460349.2930940986], [2460349.294100731, 2460349.2942125793], [2460349.2952192123, 2460349.2954429085], [2460349.2993575926, 2460349.2994694407], [2460349.299581289, 2460349.2998049846], [2460349.30125901, 2460349.3017064026], [2460349.3024893394, 2460349.3027130356], [2460349.3057329343, 2460349.3059566305], [2460349.306515871, 2460349.306627719], [2460349.308305441, 2460349.308417289], [2460349.3089765296, 2460349.309312074], [2460349.3098713146, 2460349.310206859], [2460349.317141441, 2460349.3172532893], [2460349.3174769855, 2460349.317924378], [2460349.3183717704, 2460349.3184836186], [2460349.318707315, 2460349.318931011], [2460349.319042859, 2460349.3191547072], [2460349.3211679733, 2460349.3213916696], [2460349.3237404795, 2460349.3238523277], [2460349.324076024, 2460349.324411568], [2460349.3245234163, 2460349.3246352645], [2460349.3248589607, 2460349.324970809], [2460349.325082657, 2460349.325306353], [2460349.32608929, 2460349.326312986], [2460349.3353726827, 2460349.3362674676], [2460349.3393992144, 2460349.3397347587], [2460349.339958455, 2460349.340070303], [2460349.3496892406, 2460349.3498010887], [2460349.354610557, 2460349.3547224053], [2460349.3550579497, 2460349.355169798], [2460349.3575186078, 2460349.357742304], [2460349.358637089, 2460349.358748937], [2460349.359867418, 2460349.3599792663], [2460349.367137545, 2460349.367361241], [2460349.3723944062, 2460349.3725062544], [2460349.377427571, 2460349.377539419], [2460349.3926389134, 2460349.3929744577], [2460349.395099572, 2460349.395435116], [2460349.3961062045, 2460349.3963299007], [2460349.4097516737, 2460349.409863522], [2460349.4192587626, 2460349.4193706107], [2460349.4264170416, 2460349.4265288897], [2460349.4288777, 2460349.429213244], [2460349.4323449912, 2460349.4324568394], [2460349.43301608, 2460349.433127928], [2460349.4419639283, 2460349.4421876245], [2460349.4450956755, 2460349.4452075236], [2460349.4547146126, 2460349.4548264607], [2460349.459524081, 2460349.459635929], [2460349.4653401827, 2460349.465563879], [2460349.4692548662, 2460349.4693667144], [2460349.492966665, 2460349.4933022093], [2460349.497216893, 2460349.497328741], [2460349.5016908175, 2460349.5019145138], [2460349.502809298, 2460349.5030329945], [2460349.505605501, 2460349.5061647417], [2460349.519027274, 2460349.519139122], [2460349.5323371985, 2460349.5325608947], [2460349.534574161, 2460349.534686009], [2460349.539271781, 2460349.5393836293], [2460349.546318212, 2460349.5467656045], [2460349.5535883387, 2460349.553923883], [2460349.5585096553, 2460349.5586215034], [2460349.5614177063, 2460349.5615295544], [2460349.561865099, 2460349.561976947], [2460349.5731617576, 2460349.5732736057], [2460349.5738328462, 2460349.5741683906], [2460349.5764053524, 2460349.5765172006], [2460349.5766290487, 2460349.576964593], [2460349.579872644, 2460349.579984492], [2460349.582109606, 2460349.5824451502], [2460349.590386366, 2460349.5906100622], [2460349.5917285434, 2460349.5918403915], [2460349.598886822, 2460349.59899867], [2460349.602689658, 2460349.602801506], [2460349.6069398858, 2460349.607163582], [2460349.6117493543, 2460349.6118612024], [2460349.6129796836, 2460349.6130915317], [2460349.613315228, 2460349.613427076], [2460349.6139863166, 2460349.6140981647], [2460349.614321861, 2460349.614433709], [2460349.614545557, 2460349.6152166454], [2460349.6153284935, 2460349.6154403416], [2460349.615664038, 2460349.6162232785], [2460349.6164469747, 2460349.616670671], [2460349.616782519, 2460349.616894367], [2460349.6170062153, 2460349.6174536077], [2460349.617677304, 2460349.6180128483], [2460349.6182365445, 2460349.6183483927], [2460349.618460241, 2460349.618795785], [2460349.6191313295, 2460349.6203616587], [2460349.6204735064, 2460349.6476525967]] freq_flags: [[49911499.0234375, 50155639.6484375], [51620483.3984375, 51864624.0234375], [55038452.1484375, 55160522.4609375], [56503295.8984375, 56747436.5234375], [57113647.4609375, 58822631.8359375], [58944702.1484375, 59066772.4609375], [59188842.7734375, 59310913.0859375], [62240600.5859375, 62973022.4609375], [66146850.5859375, 67367553.7109375], [69931030.2734375, 70053100.5859375], [73837280.2734375, 75057983.3984375], [77865600.5859375, 78109741.2109375], [81283569.3359375, 81405639.6484375], [87509155.2734375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112899780.2734375, 113021850.5859375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [121688842.7734375, 121810913.0859375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [144638061.5234375, 145004272.4609375], [145492553.7109375, 145736694.3359375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148178100.5859375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [151840209.9609375, 151962280.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [158187866.2109375, 158309936.5234375], [159164428.7109375, 159286499.0234375], [160263061.5234375, 160385131.8359375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [183212280.2734375, 183334350.5859375], [186386108.3984375, 186630249.0234375], [187362670.8984375, 187606811.5234375], [189559936.5234375, 189804077.1484375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191635131.8359375], [193222045.8984375, 193344116.2109375], [195663452.1484375, 195785522.4609375], [196395874.0234375, 196640014.6484375], [196884155.2734375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [200790405.2734375, 200912475.5859375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206771850.5859375, 207015991.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [210433959.9609375, 210556030.2734375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [215682983.3984375, 215805053.7109375], [218978881.8359375, 219100952.1484375], [220565795.8984375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [222640991.2109375, 223861694.3359375], [225692749.0234375, 225814819.3359375], [227401733.3984375, 227767944.3359375], [229110717.7734375, 229476928.7109375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [5, Jee], [10, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [51, Jee], [54, Jee], [61, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jee], [73, Jnn], [78, Jee], [78, Jnn], [79, Jee], [86, Jee], [86, Jnn], [87, Jee], [89, Jee], [89, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [103, Jnn], [104, Jnn], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [120, Jee], [120, Jnn], [127, Jee], [127, Jnn], [136, Jnn], [140, Jee], [142, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [176, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [189, Jee], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [217, Jnn], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jee], [269, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [295, Jee], [295, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 472.47 minutes.