Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1758 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460350/zen.2460350.25444.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1758 *.sum.smooth.calfits files starting with /mnt/sn1/2460350/zen.2460350.25444.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
24.672% of waterfall flagged to start. 25.656% of waterfall flagged after flagging z > 5.0 outliers. 25.857% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 110 integrations and 6 channels. Flagging 16 channels previously flagged 25.00% or more. Flagging 41 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 3 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 2 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 30.226% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1758 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460350/zen.2460350.25444.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460350/2460350_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460350.2600293946, 2460350.260476787], [2460350.260588635, 2460350.2607004833], [2460350.2608123315, 2460350.2609241796], [2460350.2629374457, 2460350.263049294], [2460350.2636085344, 2460350.2638322306], [2460350.2640559264, 2460350.2642796226], [2460350.266404737, 2460350.266516585], [2460350.2670758255, 2460350.2671876736], [2460350.2679706104, 2460350.2681943066], [2460350.2688653953, 2460350.2690890916], [2460350.269312788, 2460350.269648332], [2460350.2723326865, 2460350.2725563827], [2460350.2743459526, 2460350.274905193], [2460350.2766947625, 2460350.277030307], [2460350.281280535, 2460350.281504231], [2460350.2817279273, 2460350.2818397754], [2460350.2827345603, 2460350.2830701047], [2460350.285307067, 2460350.285418915], [2460350.2874321807, 2460350.287544029], [2460350.287655877, 2460350.2879914213], [2460350.288774358, 2460350.2889980543], [2460350.2936956747, 2460350.293807523], [2460350.293919371, 2460350.294031219], [2460350.2961563333, 2460350.2962681814], [2460350.298057751, 2460350.298169599], [2460350.3005184093, 2460350.3008539537], [2460350.3039857005, 2460350.3042093967], [2460350.304321245, 2460350.304433093], [2460350.3049923335, 2460350.3051041816], [2460350.305551574, 2460350.3057752703], [2460350.30756484, 2460350.3076766883], [2460350.3077885364, 2460350.3081240808], [2460350.309801802, 2460350.30991365], [2460350.310920283, 2460350.3111439794], [2460350.3141638786, 2460350.3142757267], [2460350.314946815, 2460350.315058663], [2460350.315170511, 2460350.3153942074], [2460350.3175193216, 2460350.317966714], [2460350.318078562, 2460350.3181904103], [2460350.3261316256, 2460350.32646717], [2460350.326579018, 2460350.326690866], [2460350.330493702, 2460350.3308292464], [2460350.3310529427, 2460350.331276639], [2460350.3322832715, 2460350.3325069677], [2460350.334855778, 2460350.3349676263], [2460350.335862411, 2460350.3360861074], [2460350.3369808923, 2460350.3370927405], [2460350.3372045886, 2460350.3373164367], [2460350.338099373, 2460350.338211221], [2460350.33888231, 2460350.339106006], [2460350.3423496014, 2460350.342685146], [2460350.3436917784, 2460350.3439154746], [2460350.348501247, 2460350.348724943], [2460350.3646073746, 2460350.3647192228], [2460350.364831071, 2460350.364942919], [2460350.3699760837, 2460350.37019978], [2460350.374450008, 2460350.374561856], [2460350.383286008, 2460350.3833978563], [2460350.3907798314, 2460350.3908916796], [2460350.3993921354, 2460350.3995039836], [2460350.3996158317, 2460350.400063224], [2460350.410688794, 2460350.4109124904], [2460350.4129257565, 2460350.4130376047], [2460350.423103934, 2460350.4232157823], [2460350.4271304663, 2460350.4272423144], [2460350.430374061, 2460350.4304859093], [2460350.4318280867, 2460350.431939935], [2460350.436525707, 2460350.4366375552], [2460350.4394337577, 2460350.439545606], [2460350.442789201, 2460350.4429010493], [2460350.443683986, 2460350.443795834], [2460350.4446906187, 2460350.444802467], [2460350.445026163, 2460350.445138011], [2460350.4453617074, 2460350.4454735555], [2460350.4458091, 2460350.4462564923], [2460350.4463683404, 2460350.4464801885], [2460350.4491645433, 2460350.4495000876], [2460350.454309556, 2460350.4544214043], [2460350.454980645, 2460350.455092493], [2460350.4587834803, 2460350.4588953285], [2460350.4663891518, 2460350.466501], [2460350.4687379617, 2460350.468961658], [2460350.474442215, 2460350.4745540633], [2460350.4776858105, 2460350.4777976586], [2460350.4870810513, 2460350.4871928995], [2460350.4903246462, 2460350.4904364944], [2460350.4934563935, 2460350.4936800897], [2460350.494015634, 2460350.4943511784], [2460350.4958052034, 2460350.4959170516], [2460350.496140748, 2460350.496252596], [2460350.5010620644, 2460350.5011739125], [2460350.501621305, 2460350.501733153], [2460350.5028516343, 2460350.5029634824], [2460350.5032990268, 2460350.503522723], [2460350.5128061157, 2460350.513029812], [2460350.513924597, 2460350.514148293], [2460350.515043078, 2460350.515154926], [2460350.518510369, 2460350.5189577616], [2460350.5196288503, 2460350.5198525465], [2460350.5229842933, 2460350.5230961414], [2460350.5232079895, 2460350.5233198376], [2460350.52376723, 2460350.5241027744], [2460350.52969518, 2460350.529918876], [2460350.5358468257, 2460350.535958674], [2460350.536070522, 2460350.53618237], [2460350.5395378135, 2460350.5396496616], [2460350.5398733574, 2460350.5399852055], [2460350.5436761933, 2460350.5437880415], [2460350.54445913, 2460350.5445709783], [2460350.5447946745, 2460350.5449065226], [2460350.5481501175, 2460350.5483738137], [2460350.5522884973, 2460350.55273589], [2460350.5543017634, 2460350.5544136115], [2460350.557097966, 2460350.557321662], [2460350.558216447, 2460350.558328295], [2460350.562466675, 2460350.562690371], [2460350.5629140674, 2460350.5630259155], [2460350.564368093, 2460350.564479941], [2460350.5670524477, 2460350.567387992], [2460350.5723093087, 2460350.572533005], [2460350.574210726, 2460350.5746581187], [2460350.5762239923, 2460350.5765595366], [2460350.579355739, 2460350.579467587], [2460350.5850599925, 2460350.5851718406], [2460350.5870732586, 2460350.5871851067], [2460350.587408803, 2460350.587632499], [2460350.5888628284, 2460350.5889746766], [2460350.5914353346, 2460350.591882727], [2460350.5921064233, 2460350.5924419677], [2460350.5963566513, 2460350.5964684994], [2460350.5973632843, 2460350.5974751324], [2460350.597922525, 2460350.598146221], [2460350.600830576, 2460350.6011661203], [2460350.6013898165, 2460350.6016135127], [2460350.6046334114, 2460350.6048571076], [2460350.606199285, 2460350.6066466775], [2460350.606982222, 2460350.607317766], [2460350.609331032, 2460350.6097784243], [2460350.6110087535, 2460350.611344298], [2460350.6117916903, 2460350.6120153866], [2460350.6133575635, 2460350.613693108], [2460350.6142523484, 2460350.614811589], [2460350.616824855, 2460350.6171603994], [2460350.61771964, 2460350.6179433363], [2460350.6183907287, 2460350.618502577], [2460350.6196210575, 2460350.6197329056], [2460350.6204039943, 2460350.6206276906], [2460350.621969868, 2460350.6223054123], [2460350.6226409567, 2460350.623088349], [2460350.625213463, 2460350.625437159], [2460350.626443792, 2460350.6266674884], [2460350.6280096658, 2460350.628121514], [2460350.628233362, 2460350.6285689063], [2460350.6289044507, 2460350.629128147], [2460350.6294636913, 2460350.6296873875], [2460350.6303584757, 2460350.630470324], [2460350.63069402, 2460350.6310295644], [2460350.631588805, 2460350.6318125012], [2460350.6320361975, 2460350.6321480456], [2460350.632707286, 2460350.6330428305], [2460350.6331546786, 2460350.6332665267], [2460350.633490223, 2460350.6339376154], [2460350.6341613117, 2460350.63427316], [2460350.6349442485, 2460350.6351679447], [2460350.635279793, 2460350.635503489], [2460350.635727185, 2460350.636733818], [2460350.636845666, 2460350.637852299], [2460350.6380759953, 2460350.6385233877], [2460350.638635236, 2460350.638747084], [2460350.6390826283, 2460350.6409840463], [2460350.6410958944, 2460350.64131959], [2460350.6414314383, 2460350.6416551345], [2460350.6417669826, 2460350.647583084]] freq_flags: [[49911499.0234375, 50155639.6484375], [51254272.4609375, 51742553.7109375], [53695678.7109375, 53817749.0234375], [55892944.3359375, 56015014.6484375], [56503295.8984375, 56625366.2109375], [57601928.7109375, 57723999.0234375], [58334350.5859375, 58456420.8984375], [62240600.5859375, 62973022.4609375], [63095092.7734375, 63217163.0859375], [65902709.9609375, 67001342.7734375], [69931030.2734375, 70053100.5859375], [70541381.8359375, 70663452.1484375], [73837280.2734375, 75057983.3984375], [77621459.9609375, 77743530.2734375], [77865600.5859375, 78109741.2109375], [78231811.5234375, 78353881.8359375], [81283569.3359375, 81527709.9609375], [87509155.2734375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124740600.5859375, 125228881.8359375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [144638061.5234375, 144760131.8359375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [158187866.2109375, 158309936.5234375], [158676147.4609375, 158798217.7734375], [159164428.7109375, 159286499.0234375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170028686.5234375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [190902709.9609375, 191635131.8359375], [195541381.8359375, 195785522.4609375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [222885131.8359375, 223617553.7109375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [18, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jee], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [79, Jee], [82, Jnn], [83, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [89, Jee], [89, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [101, Jee], [101, Jnn], [103, Jnn], [104, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [122, Jee], [122, Jnn], [127, Jee], [127, Jnn], [136, Jnn], [140, Jee], [152, Jee], [152, Jnn], [153, Jee], [153, Jnn], [154, Jee], [154, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [176, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [205, Jnn], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [217, Jee], [217, Jnn], [218, Jnn], [225, Jee], [225, Jnn], [226, Jee], [226, Jnn], [229, Jee], [232, Jee], [232, Jnn], [240, Jee], [240, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 20.22 minutes.