Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1684 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460351/zen.2460351.25439.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1684 *.sum.smooth.calfits files starting with /mnt/sn1/2460351/zen.2460351.25439.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
21.970% of waterfall flagged to start. 23.632% of waterfall flagged after flagging z > 5.0 outliers. 23.990% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 249 integrations and 34 channels. Flagging 36 channels previously flagged 25.00% or more. Flagging 67 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 33 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 35.963% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1684 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460351/zen.2460351.25439.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460351/2460351_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460351.2556220293, 2460351.2557338774], [2460351.2558457255, 2460351.2559575737], [2460351.2578589916, 2460351.2579708397], [2460351.258194536, 2460351.258418232], [2460351.261661827, 2460351.261773675], [2460351.2630040045, 2460351.263339549], [2460351.263675093, 2460351.2637869413], [2460351.265800207, 2460351.2661357513], [2460351.266694992, 2460351.267030536], [2460351.268708258, 2460351.2690438023], [2460351.269714891, 2460351.2700504353], [2460351.2708333717, 2460351.271280764], [2460351.272175549, 2460351.2723992453], [2460351.2734058783, 2460351.2736295746], [2460351.2747480557, 2460351.274971752], [2460351.2770968657, 2460351.277208714], [2460351.277320562, 2460351.2777679544], [2460351.284478841, 2460351.284590689], [2460351.2874987395, 2460351.2876105877], [2460351.2894001575, 2460351.2895120056], [2460351.28984755, 2460351.289959398], [2460351.2921963604, 2460351.2923082085], [2460351.293202993, 2460351.293314841], [2460351.294097778, 2460351.294209626], [2460351.2947688666, 2460351.2948807147], [2460351.294992563, 2460351.295216259], [2460351.3072958547, 2460351.307631399], [2460351.3105394496, 2460351.310763146], [2460351.313671197, 2460351.313783045], [2460351.314006741, 2460351.3141185893], [2460351.3145659817, 2460351.314789678], [2460351.316355551, 2460351.3164673992], [2460351.318033273, 2460351.318145121], [2460351.318928058, 2460351.319151754], [2460351.320605779, 2460351.320717627], [2460351.32172426, 2460351.3221716527], [2460351.3265337287, 2460351.326757425], [2460351.32765221, 2460351.327764058], [2460351.3313431977, 2460351.331455046], [2460351.333132767, 2460351.3336920077], [2460351.3343630964, 2460351.3344749445], [2460351.3345867926, 2460351.3346986407], [2460351.3362645144, 2460351.3363763625], [2460351.336711907, 2460351.336823755], [2460351.3380540838, 2460351.33827778], [2460351.3417450716, 2460351.3418569197], [2460351.3492388944, 2460351.3493507425], [2460351.349686287, 2460351.350021831], [2460351.3565090215, 2460351.356844566], [2460351.360535553, 2460351.3607592494], [2460351.368700465, 2460351.3689241614], [2460351.3701544907, 2460351.370266339], [2460351.370601883, 2460351.3709374275], [2460351.3710492756, 2460351.3730625412], [2460351.3731743894, 2460351.3732862375], [2460351.3750758073, 2460351.375746896], [2460351.385253985, 2460351.385477681], [2460351.3867080105, 2460351.3868198586], [2460351.3882738836, 2460351.388833124], [2460351.3892805167, 2460351.389504213], [2460351.3900634535, 2460351.3901753016], [2460351.3902871497, 2460351.390398998], [2460351.3910700865, 2460351.3912937827], [2460351.394761074, 2460351.394872922], [2460351.396886188, 2460351.3971098843], [2460351.399346846, 2460351.3999060867], [2460351.4067288213, 2460351.4068406695], [2460351.411650138, 2460351.411761986], [2460351.4166833027, 2460351.416906999], [2460351.417801784, 2460351.433426343], [2460351.4392424445, 2460351.4394661407], [2460351.4429334323, 2460351.4430452804], [2460351.4431571285, 2460351.4432689766], [2460351.4493087744, 2460351.4494206225], [2460351.457361838, 2460351.4579210784], [2460351.4580329265, 2460351.4581447747], [2460351.4613883696, 2460351.4615002177], [2460351.46194761, 2460351.4620594583], [2460351.4660859904, 2460351.4663096867], [2460351.4727968764, 2460351.4729087246], [2460351.4989693337, 2460351.499081182], [2460351.500087815, 2460351.500311511], [2460351.5012062956, 2460351.50154184], [2460351.501653688, 2460351.5022129286], [2460351.502436625, 2460351.502548473], [2460351.5041143466, 2460351.507917182], [2460351.509035663, 2460351.5098186], [2460351.509930448, 2460351.5102659925], [2460351.514068828, 2460351.514180676], [2460351.535319968, 2460351.5354318162], [2460351.549748374, 2460351.5498602223], [2460351.5693217926, 2460351.5694336407], [2460351.572677236, 2460351.572789084], [2460351.57949997, 2460351.5797236664], [2460351.5828554137, 2460351.582967262], [2460351.5847568316, 2460351.5848686798], [2460351.587553034, 2460351.587664882], [2460351.592921743, 2460351.5931454394], [2460351.5975075155, 2460351.5976193636], [2460351.6056724275, 2460351.6057842756], [2460351.6098108073, 2460351.6101463516], [2460351.6162979975, 2460351.6164098457], [2460351.616633542, 2460351.61674539], [2460351.617752023, 2460351.6180875674], [2460351.6181994155, 2460351.6184231117], [2460351.618646808, 2460351.618870504], [2460351.618982352, 2460351.6190942], [2460351.619206048, 2460351.647503619]] freq_flags: [[49911499.0234375, 50155639.6484375], [53695678.7109375, 53817749.0234375], [54916381.8359375, 55282592.7734375], [55648803.7109375, 56137084.9609375], [56381225.5859375, 57113647.4609375], [57235717.7734375, 57846069.3359375], [58090209.9609375, 58578491.2109375], [62240600.5859375, 63461303.7109375], [65902709.9609375, 67245483.3984375], [69931030.2734375, 70053100.5859375], [73959350.5859375, 74935913.0859375], [77865600.5859375, 77987670.8984375], [87509155.2734375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [124740600.5859375, 125228881.8359375], [126693725.5859375, 126815795.8984375], [127182006.8359375, 127426147.4609375], [128036499.0234375, 128280639.6484375], [128524780.2734375, 128646850.5859375], [129013061.5234375, 129257202.1484375], [129989624.0234375, 130111694.3359375], [130599975.5859375, 135848999.0234375], [136093139.6484375, 136459350.5859375], [136581420.8984375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138534545.8984375, 138778686.5234375], [139266967.7734375, 139877319.3359375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [149642944.3359375, 150253295.8984375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170028686.5234375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [15, Jnn], [18, Jnn], [20, Jee], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [55, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [79, Jee], [86, Jee], [86, Jnn], [87, Jee], [89, Jee], [89, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [104, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [136, Jnn], [140, Jee], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [176, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [205, Jnn], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [217, Jnn], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 111.53 minutes.