Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1758 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460358/zen.2460358.25447.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1758 *.sum.smooth.calfits files starting with /mnt/sn1/2460358/zen.2460358.25447.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
20.125% of waterfall flagged to start. 49.909% of waterfall flagged after flagging z > 5.0 outliers. 54.946% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 156 integrations and 0 channels. Flagging 1221 channels previously flagged 25.00% or more. Flagging 1061 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 97.737% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1758 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460358/zen.2460358.25447.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460358/2460358_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460358.254360983, 2460358.288586504], [2460358.288698352, 2460358.289593137], [2460358.289816833, 2460358.2900405293], [2460358.2901523774, 2460358.292053795], [2460358.292165643, 2460358.292277491], [2460358.2927248836, 2460358.2928367318], [2460358.293060428, 2460358.293284124], [2460358.2947381497, 2460358.294961846], [2460358.2956329347, 2460358.295968479], [2460358.296751416, 2460358.296863264], [2460358.297422504, 2460358.297534352], [2460358.298205441, 2460358.298317289], [2460358.2988765296, 2460358.2989883777], [2460358.299100226, 2460358.299212074], [2460358.300218707, 2460358.300330555], [2460358.3008897956, 2460358.3010016438], [2460358.3015608843, 2460358.3017845806], [2460358.3026793655, 2460358.3030149094], [2460358.30357415, 2460358.303797846], [2460358.30536372, 2460358.305475568], [2460358.3061466566, 2460358.3062585047], [2460358.307488834, 2460358.307600682], [2460358.3080480746, 2460358.308831011], [2460358.308942859, 2460358.309054707], [2460358.3096139478, 2460358.309725796], [2460358.3102850365, 2460358.3105087327], [2460358.310956125, 2460358.3110679733], [2460358.311627214, 2460358.311739062], [2460358.3124101507, 2460358.312521999], [2460358.3130812394, 2460358.3131930875], [2460358.3144234163, 2460358.3145352644], [2460358.315094505, 2460358.315206353], [2460358.315877442, 2460358.31598929], [2460358.316212986, 2460358.3163248342], [2460358.317219619, 2460358.3173314673], [2460358.317890708, 2460358.318002556], [2460358.319121037, 2460358.3192328853], [2460358.3200158216, 2460358.3201276697], [2460358.320351366, 2460358.320463214], [2460358.320575062, 2460358.3206869103], [2460358.325272683, 2460358.325384531], [2460358.3259437713, 2460358.3260556194], [2460358.32661486, 2460358.326726708], [2460358.3272859487, 2460358.327397797], [2460358.3282925817, 2460358.32840443], [2460358.328739974, 2460358.3289636704], [2460358.3290755185, 2460358.329522911], [2460358.329746607, 2460358.3298584553], [2460358.3308650884, 2460358.3309769365], [2460358.331088784, 2460358.3312006323], [2460358.3315361766, 2460358.3316480247], [2460358.331759873, 2460358.331871721], [2460358.3322072653, 2460358.3323191134], [2460358.3325428097, 2460358.332654658], [2460358.332878354, 2460358.332990202], [2460358.3332138984, 2460358.3333257465], [2460358.333884987, 2460358.333996835], [2460358.3345560757, 2460358.334667924], [2460358.3353390126, 2460358.3354508607], [2460358.3360101013, 2460358.3361219494], [2460358.3365693414, 2460358.337016734], [2460358.337128582, 2460358.3376878225], [2460358.338023367, 2460358.338135215], [2460358.3388063037, 2460358.338918152], [2460358.3394773924, 2460358.3395892405], [2460358.340148481, 2460358.340260329], [2460358.3405958735, 2460358.341043266], [2460358.3413788103, 2460358.3416025066], [2460358.342273595, 2460358.342385443], [2460358.3429446835, 2460358.3430565316], [2460358.3431683797, 2460358.343392076], [2460358.343615772, 2460358.3437276203], [2460358.344286861, 2460358.344510557], [2460358.3449579496, 2460358.3450697977], [2460358.3499911143, 2460358.350774051], [2460358.355807216, 2460358.3561427603], [2460358.3575967858, 2460358.357708634], [2460358.363301039, 2460358.3634128873], [2460358.363972128, 2460358.364083976], [2460358.37034747, 2460358.370683014], [2460358.3721370394, 2460358.3722488876], [2460358.377058356, 2460358.377170204], [2460358.3772820523, 2460358.377841293], [2460358.380078255, 2460358.3801901033], [2460358.3804137995, 2460358.3815322807], [2460358.3816441284, 2460358.3817559765], [2460358.3844403313, 2460358.3845521794], [2460358.385223268, 2460358.3854469643], [2460358.3855588124, 2460358.3857825086], [2460358.386006205, 2460358.3867891417], [2460358.3908156734, 2460358.3909275215], [2460358.392940787, 2460358.3930526352], [2460358.393611876, 2460358.393723724], [2460358.3942829645, 2460358.3943948126], [2460358.39573699, 2460358.395848838], [2460358.3964080787, 2460358.396519927], [2460358.3987568887, 2460358.398868737], [2460358.405132231, 2460358.405355927], [2460358.406138864, 2460358.406474408], [2460358.407145497, 2460358.407369193], [2460358.4074810413, 2460358.4075928894], [2460358.4100535475, 2460358.410389092], [2460358.4109483324, 2460358.4110601805], [2460358.4111720286, 2460358.411395725], [2460358.411619421, 2460358.4120668136], [2460358.4127379023, 2460358.413632687], [2460358.4137445353, 2460358.4140800796], [2460358.415198561, 2460358.415310409], [2460358.4165407377, 2460358.416652586], [2460358.4172118264, 2460358.4173236745], [2460358.417882915, 2460358.4181066114], [2460358.418665852, 2460358.4187777], [2460358.4193369406, 2460358.4194487887], [2460358.4200080293, 2460358.4201198774], [2460358.420679118, 2460358.420790966], [2460358.4213502062, 2460358.4214620544], [2460358.422133143, 2460358.422244991], [2460358.4247056497, 2460358.424817498], [2460358.425712283, 2460358.425935979], [2460358.4261596752, 2460358.4262715233], [2460358.4263833715, 2460358.4264952196], [2460358.428172941, 2460358.428284789], [2460358.4288440295, 2460358.4289558777], [2460358.429179574, 2460358.429291422], [2460358.4318639287, 2460358.431975777], [2460358.4323113207, 2460358.432423169], [2460358.432646865, 2460358.432758713], [2460358.4333179537, 2460358.433429802], [2460358.4357786123, 2460358.4360023085], [2460358.4361141566, 2460358.4362260047], [2460358.4367852453, 2460358.4368970934], [2460358.4395814477, 2460358.439693296], [2460358.4410354733, 2460358.4411473214], [2460358.441706562, 2460358.44181841], [2460358.4438316757, 2460358.443943524], [2460358.4445027644, 2460358.4446146125], [2460358.445173853, 2460358.4453975493], [2460358.44595679, 2460358.446068638], [2460358.4462923342, 2460358.4464041824], [2460358.4466278786, 2460358.4467397267], [2460358.4472989673, 2460358.4474108154], [2460358.448752993, 2460358.448864841], [2460358.448976689, 2460358.4492003853], [2460358.449424081, 2460358.449535929], [2460358.4500951697, 2460358.450207018], [2460358.4508781065, 2460358.4511018028], [2460358.451437347, 2460358.451549195], [2460358.4517728915, 2460358.4518847396], [2460358.4525558283, 2460358.4527795245], [2460358.453226917, 2460358.453338765], [2460358.4538980057, 2460358.454009854], [2460358.4550164863, 2460358.4551283345], [2460358.4562468156, 2460358.4563586637], [2460358.456694208, 2460358.456806056], [2460358.4569179043, 2460358.4570297524], [2460358.4580363855, 2460358.4581482336], [2460358.459490411, 2460358.459602259], [2460358.459714107, 2460358.4598259553], [2460358.460385196, 2460358.460497044], [2460358.4606088917, 2460358.46072074], [2460358.461056284, 2460358.4612799804], [2460358.461839221, 2460358.461951069], [2460358.4625103096, 2460358.4626221578], [2460358.4631813983, 2460358.4632932465], [2460358.4645235757, 2460358.464635424], [2460358.46485912, 2460358.466089449], [2460358.466201297, 2460358.4664249932], [2460358.4703396773, 2460358.4704515254], [2460358.470898918, 2460358.471010766], [2460358.472352943, 2460358.472464791], [2460358.474366209, 2460358.474478057], [2460358.475149146, 2460358.475260994], [2460358.4758202345, 2460358.4759320826], [2460358.477050564, 2460358.47727426], [2460358.477721652, 2460358.4779453482], [2460358.480629703, 2460358.480741551], [2460358.483202209, 2460358.4833140573], [2460358.4845443866, 2460358.4854391715], [2460358.4855510197, 2460358.485886564], [2460358.485998412, 2460358.4861102602], [2460358.486669501, 2460358.486781349], [2460358.487005045, 2460358.4874524376], [2460358.488011678, 2460358.4881235263], [2460358.4887946146, 2460358.4889064627], [2460358.4894657033, 2460358.4895775514], [2460358.490136792, 2460358.49024864], [2460358.4906960325, 2460358.4909197288], [2460358.4914789693, 2460358.4915908175], [2460358.492261906, 2460358.4923737543], [2460358.4924856024, 2460358.4927092986], [2460358.494275172, 2460358.49438702], [2460358.494498868, 2460358.494610716], [2460358.4949462605, 2460358.4950581086], [2460358.4951699567, 2460358.495281805], [2460358.495505501, 2460358.4959528935], [2460358.4960647416, 2460358.4961765897], [2460358.496400286, 2460358.4968476784], [2460358.497406919, 2460358.497518767], [2460358.498189856, 2460358.498301704], [2460358.4988609445, 2460358.4989727926], [2460358.499532033, 2460358.4996438813], [2460358.5002031215, 2460358.5003149696], [2460358.500650514, 2460358.500762362], [2460358.50087421, 2460358.5009860583], [2460358.501657147, 2460358.501768995], [2460358.5021045394, 2460358.5022163875], [2460358.502775628, 2460358.5028874762], [2460358.505348135, 2460358.5055718306], [2460358.505795527, 2460358.507808793], [2460358.5083680335, 2460358.508703578], [2460358.508927274, 2460358.5091509703], [2460358.5094865146, 2460358.5095983627], [2460358.509710211, 2460358.509822059], [2460358.5101576033, 2460358.5102694514], [2460358.510828692, 2460358.51094054], [2460358.511276084, 2460358.511387932], [2460358.51149978, 2460358.5116116283], [2460358.5118353246, 2460358.512059021], [2460358.512170869, 2460358.512282717], [2460358.5125064133, 2460358.5126182614], [2460358.5127301095, 2460358.513065654], [2460358.513177502, 2460358.51328935], [2460358.5145196794, 2460358.5146315275], [2460358.515302616, 2460358.5154144643], [2460358.515973705, 2460358.516085553], [2460358.5166447936, 2460358.5167566417], [2460358.5169803374, 2460358.5172040337], [2460358.517315882, 2460358.51742773], [2460358.5178751224, 2460358.5180988186], [2460358.518658059, 2460358.5188817554], [2460358.5191054516, 2460358.519329148], [2460358.519440996, 2460358.519664692], [2460358.5198883885, 2460358.520447629], [2460358.5210068696, 2460358.5211187177], [2460358.5216779583, 2460358.5217898064], [2460358.522125351, 2460358.522237199], [2460358.522572743, 2460358.522684591], [2460358.5231319834, 2460358.5232438315], [2460358.5252570976, 2460358.5253689457], [2460358.526599275, 2460358.526711123], [2460358.5270466674, 2460358.5273822118], [2460358.527829604, 2460358.5280533], [2460358.5286125406, 2460358.5287243887], [2460358.5292836293, 2460358.5293954774], [2460358.529954718, 2460358.5304021104], [2460358.5306258067, 2460358.530849503], [2460358.5312968954, 2460358.5314087435], [2460358.5315205916, 2460358.5316324397], [2460358.532862769, 2460358.5331983133], [2460358.5365537563, 2460358.5366656044], [2460358.5385670224, 2460358.538902567], [2460358.5393499588, 2460358.5400210475], [2460358.5409158324, 2460358.5411395286], [2460358.5481859595, 2460358.5482978076], [2460358.548857048, 2460358.5489688963], [2460358.549528137, 2460358.549639985], [2460358.5501992255, 2460358.55053477], [2460358.5507584657, 2460358.5514295544], [2460358.5515414025, 2460358.5536665167], [2460358.553890213, 2460358.5544494535], [2460358.5545613016, 2460358.554784998], [2460358.555120542, 2460358.555903479], [2460358.556350871, 2460358.556462719], [2460358.557133808, 2460358.557245656], [2460358.5576930484, 2460358.5579167446], [2460358.558140441, 2460358.558364137], [2460358.558475985, 2460358.559035226], [2460358.559147074, 2460358.560153707], [2460358.5604892513, 2460358.5631736056], [2460358.5632854537, 2460358.5675356817], [2460358.5676475298, 2460358.5683186185], [2460358.5684304666, 2460358.5691015553], [2460358.5693252515, 2460358.5695489477], [2460358.569772644, 2460358.5702200364], [2460358.5704437327, 2460358.5713385176], [2460358.571562214, 2460358.5746939606], [2460358.575253201, 2460358.5753650493], [2460358.5755887455, 2460358.5758124418], [2460358.576036138, 2460358.576259834], [2460358.5764835305, 2460358.5767072267], [2460358.577042771, 2460358.5776020116], [2460358.577825708, 2460358.577937556], [2460358.578049404, 2460358.5782731003], [2460358.5787204923, 2460358.5788323404], [2460358.579391581, 2460358.579503429], [2460358.5800626697, 2460358.580174518], [2460358.5807337584, 2460358.5808456065], [2460358.581516695, 2460358.5816285433], [2460358.582187784, 2460358.582299632], [2460358.5828588726, 2460358.5829707207], [2460358.5835299613, 2460358.5836418094], [2460358.5849839863, 2460358.5850958345], [2460358.5869972524, 2460358.5872209487], [2460358.587668341, 2460358.58833943], [2460358.588451278, 2460358.588563126], [2460358.5887868223, 2460358.5890105185], [2460358.5891223666, 2460358.589346063], [2460358.591694873, 2460358.591918569], [2460358.593931835, 2460358.5941555314], [2460358.594938468, 2460358.5951621644], [2460358.596392493, 2460358.5965043413], [2460358.5975109744, 2460358.5977346706], [2460358.597958367, 2460358.6017612023], [2460358.602208595, 2460358.602432291], [2460358.6029915316, 2460358.6031033797], [2460358.6036626203, 2460358.6037744684], [2460358.604221861, 2460358.604445557], [2460358.6046692533, 2460358.6048929496], [2460358.605116646, 2460358.605228494], [2460358.6071299114, 2460358.6072417595], [2460358.609478722, 2460358.60959057], [2460358.6102616587, 2460358.6111564436], [2460358.61138014, 2460358.611603836], [2460358.611715684, 2460358.6119393804], [2460358.6127223168, 2460358.6136171017], [2460358.6144000385, 2460358.615071127], [2460358.6151829753, 2460358.6152948234], [2460358.6154066715, 2460358.615854064], [2460358.6160777602, 2460358.6163014565], [2460358.6165251527, 2460358.617643634], [2460358.617755482, 2460358.6180910263], [2460358.618314722, 2460358.61842657], [2460358.6185384183, 2460358.6187621146], [2460358.618985811, 2460358.6194332032], [2460358.6196568995, 2460358.626367786], [2460358.626479634, 2460358.637888141], [2460358.637999989, 2460358.647618926]] freq_flags: [[47103881.8359375, 47225952.1484375], [47470092.7734375, 73837280.2734375], [73959350.5859375, 74691772.4609375], [74813842.7734375, 86410522.4609375], [87509155.2734375, 108139038.0859375], [109237670.8984375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231307983.3984375], [231674194.3359375, 233627319.3359375]] ex_ants: [[3, Jnn], [10, Jee], [18, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [40, Jnn], [46, Jee], [47, Jee], [51, Jee], [56, Jee], [61, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [78, Jee], [78, Jnn], [79, Jee], [81, Jee], [81, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jee], [98, Jnn], [99, Jee], [99, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jnn], [115, Jee], [115, Jnn], [116, Jee], [116, Jnn], [119, Jnn], [121, Jee], [135, Jee], [135, Jnn], [136, Jee], [136, Jnn], [147, Jee], [147, Jnn], [148, Jee], [148, Jnn], [149, Jee], [149, Jnn], [155, Jee], [155, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [175, Jee], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [195, Jee], [195, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [214, Jee], [214, Jnn], [217, Jee], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [246, Jee], [246, Jnn], [251, Jee], [251, Jnn], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [269, Jnn], [270, Jee], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [283, Jee], [283, Jnn], [295, Jee], [295, Jnn], [320, Jnn], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 20.33 minutes.