Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1752 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460360/zen.2460360.25459.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1752 *.sum.smooth.calfits files starting with /mnt/sn1/2460360/zen.2460360.25459.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
26.231% of waterfall flagged to start. 45.246% of waterfall flagged after flagging z > 5.0 outliers. 49.868% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 41 integrations and 0 channels. Flagging 809 channels previously flagged 25.00% or more. Flagging 987 times previously flagged 10.00% or more. Flagging an additional 3 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 16 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 81.645% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1752 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460360/zen.2460360.25459.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460360/2460360_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460360.254476751, 2460360.2923932592], [2460360.2926169555, 2460360.2927288036], [2460360.2929525, 2460360.293064348], [2460360.293176196, 2460360.2933998923], [2460360.2935117404, 2460360.2945183734], [2460360.294965766, 2460360.295077614], [2460360.295189462, 2460360.295860551], [2460360.2963079433, 2460360.2966434876], [2460360.2967553353, 2460360.2972027278], [2460360.2977619683, 2460360.2979856646], [2460360.298433057, 2460360.298544905], [2460360.2988804495, 2460360.29943969], [2460360.2998870825, 2460360.2999989307], [2460360.300222627, 2460360.300334475], [2460360.3005581712, 2460360.3010055637], [2460360.3019003486, 2460360.302124045], [2460360.305703184, 2460360.305815032], [2460360.307380906, 2460360.307492754], [2460360.307604602, 2460360.3078282983], [2460360.3096178677, 2460360.309729716], [2460360.3105126526, 2460360.311631134], [2460360.314986577, 2460360.315098425], [2460360.3175590835, 2460360.3177827797], [2460360.319348653, 2460360.319572349], [2460360.3206908302, 2460360.3208026784], [2460360.321250071, 2460360.321473767], [2460360.3261713875, 2460360.3263950837], [2460360.338250983, 2460360.3384746793], [2460360.3388102236, 2460360.3389220717], [2460360.3416064265, 2460360.3418301228], [2460360.3439552365, 2460360.3440670846], [2460360.3511135154, 2460360.351672756], [2460360.3546926547, 2460360.354804503], [2460360.3574888576, 2460360.3576007057], [2460360.3659893135, 2460360.3662130097], [2460360.373706833, 2460360.373818681], [2460360.3749371623, 2460360.375608251], [2460360.3758319467, 2460360.375943795], [2460360.376279339, 2460360.3763911873], [2460360.376950428, 2460360.3773978204], [2460360.3775096685, 2460360.3777333647], [2460360.377845213, 2460360.377957061], [2460360.378068909, 2460360.3784044534], [2460360.3785163015, 2460360.378851846], [2460360.378963694, 2460360.379075542], [2460360.3792992383, 2460360.4112877967], [2460360.411399645, 2460360.4137484552], [2460360.4139721515, 2460360.414531392], [2460360.41464324, 2460360.4148669364], [2460360.415090632, 2460360.4153143284], [2460360.415761721, 2460360.415985417], [2460360.4163209614, 2460360.4164328096], [2460360.4165446577, 2460360.416656506], [2460360.4172157464, 2460360.4173275945], [2460360.417774987, 2460360.4181105313], [2460360.4185579238, 2460360.418669772], [2460360.4200119493, 2460360.4201237974], [2460360.4206830375, 2460360.4215778224], [2460360.4228081517, 2460360.42292], [2460360.430301975, 2460360.430413823], [2460360.431084912, 2460360.431420456], [2460360.4367891653, 2460360.4369010134], [2460360.437907646, 2460360.438019494], [2460360.4386905828, 2460360.438802431], [2460360.439920912, 2460360.44003276], [2460360.4405920007, 2460360.440703849], [2460360.4438355956, 2460360.4439474437], [2460360.445065925, 2460360.445177773], [2460360.4468554948, 2460360.446967343], [2460360.447191039, 2460360.447302887], [2460360.4474147353, 2460360.4477502797], [2460360.448085824, 2460360.448197672], [2460360.4516649633, 2460360.4518886595], [2460360.4572573686, 2460360.4573692167], [2460360.461172052, 2460360.4612839003], [2460360.4654222806, 2460360.4655341287], [2460360.4659815207, 2460360.466093369], [2460360.4668763056, 2460360.4669881538], [2460360.4703435972, 2460360.4704554453], [2460360.4717976223, 2460360.472468711], [2460360.4748175214, 2460360.4749293695], [2460360.4766070913, 2460360.4767189394], [2460360.4772781795, 2460360.4773900276], [2460360.478732205, 2460360.478955901], [2460360.4799625343, 2460360.4802980786], [2460360.4804099267, 2460360.4810810154], [2460360.4811928635, 2460360.4826468886], [2460360.4846601547, 2460360.484772003], [2460360.4852193953, 2460360.4853312434], [2460360.485778636, 2460360.485890484], [2460360.48846299, 2460360.4886866864], [2460360.4889103826, 2460360.489134079], [2460360.4895814713, 2460360.491147345], [2460360.491371041, 2460360.499983345], [2460360.500766282, 2460360.500989978], [2460360.5014373707, 2460360.501661067], [2460360.501772915, 2460360.5031150924], [2460360.5050165104, 2460360.5051283585], [2460360.5054639024, 2460360.5055757505], [2460360.5056875986, 2460360.505911295], [2460360.506134991, 2460360.5065823835], [2460360.5066942316, 2460360.506917928], [2460360.508819346, 2460360.509043042], [2460360.509714131, 2460360.509825979], [2460360.5102733714, 2460360.5103852195], [2460360.5104970676, 2460360.5110563077], [2460360.5115037, 2460360.5116155483], [2460360.5120629407, 2460360.512398485], [2460360.512510333, 2460360.5128458776], [2460360.514411751, 2460360.5145235993], [2460360.5157539286, 2460360.515977625], [2460360.516536865, 2460360.516648713], [2460360.519556764, 2460360.519668612], [2460360.5198923084, 2460360.5202278527], [2460360.520339701, 2460360.520563397], [2460360.5244780807, 2460360.524589929], [2460360.524701777, 2460360.524813625], [2460360.5276098275, 2460360.5277216756], [2460360.5293993973, 2460360.5297349417], [2460360.5304060304, 2460360.5306297266], [2460360.531077119, 2460360.5313008153], [2460360.531860056, 2460360.531971904], [2460360.5325311446, 2460360.532754841], [2460360.533537777, 2460360.5337614734], [2460360.534208866, 2460360.53454441], [2460360.5349918026, 2460360.535327347], [2460360.5358865876, 2460360.5359984357], [2460360.5400249674, 2460360.5401368155], [2460360.5411434486, 2460360.5412552967], [2460360.541590841, 2460360.5419263854], [2460360.5446107397, 2460360.544946284], [2460360.5453936765, 2460360.5455055246], [2460360.5464003095, 2460360.5465121577], [2460360.5472950945, 2460360.5475187907], [2460360.547854335, 2460360.5480780313], [2460360.5481898794, 2460360.548637272], [2460360.5493083606, 2460360.549532057], [2460360.5514334743, 2460360.5516571705], [2460360.5557955503, 2460360.5559073985], [2460360.556242943, 2460360.556354791], [2460360.557249576, 2460360.557473272], [2460360.558368057, 2460360.558479905], [2460360.5598220825, 2460360.5599339306], [2460360.560269475, 2460360.5606050193], [2460360.5608287156, 2460360.561052412], [2460360.56116426, 2460360.561499804], [2460360.5617235, 2460360.5620590444], [2460360.5622827406, 2460360.562506437], [2460360.562618285, 2460360.562841981], [2460360.5632893736, 2460360.5640723105], [2460360.564743399, 2460360.5653026397], [2460360.565414488, 2460360.565638184], [2460360.565750032, 2460360.5669803615], [2460360.5672040572, 2460360.567763298], [2460360.5682106903, 2460360.568881779], [2460360.5695528677, 2460360.569776564], [2460360.57000026, 2460360.5704476526], [2460360.570783197, 2460360.571006893], [2460360.5711187413, 2460360.5713424375], [2460360.5726846145, 2460360.573020159], [2460360.573243855, 2460360.573355703], [2460360.5736912475, 2460360.5739149437], [2460360.575033425, 2460360.5758163617], [2460360.57592821, 2460360.5763756023], [2460360.576934843, 2460360.577270387], [2460360.577941476, 2460360.578165172], [2460360.578500716, 2460360.579283653], [2460360.579619197, 2460360.5801784378], [2460360.580402134, 2460360.5808495265], [2460360.5809613746, 2460360.581185071], [2460360.581296919, 2460360.5819680076], [2460360.582191704, 2460360.5824154], [2460360.58476421, 2460360.5904684635], [2460360.591810641, 2460360.592034337], [2460360.5936002107, 2460360.593712059], [2460360.5957253245, 2460360.596284565], [2460360.5987452236, 2460360.59896892], [2460360.599192616, 2460360.5998637048], [2460360.600311097, 2460360.6007584897], [2460360.60780492, 2460360.607916768], [2460360.6081404644, 2460360.6083641606], [2460360.610824819, 2460360.6109366673], [2460360.613173629, 2460360.6132854773], [2460360.613956566, 2460360.6156342877], [2460360.618206794, 2460360.6187660345], [2460360.6188778826, 2460360.619101579], [2460360.6195489713, 2460360.6196608194], [2460360.6207793006, 2460360.621114845], [2460360.6216740855, 2460360.6218977817], [2460360.623016263, 2460360.626483554], [2460360.6267072503, 2460360.6271546427], [2460360.627266491, 2460360.633753681], [2460360.6339773773, 2460360.6342010736], [2460360.6343129217, 2460360.63498401], [2460360.635207706, 2460360.6418067445], [2460360.6420304407, 2460360.642477833], [2460360.6425896813, 2460360.64326077], [2460360.643372618, 2460360.6435963144], [2460360.6437081625, 2460360.647510998]] freq_flags: [[47103881.8359375, 67367553.7109375], [68588256.8359375, 74935913.0859375], [75302124.0234375, 82504272.4609375], [84945678.7109375, 85067749.0234375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [110458374.0234375, 124496459.9609375], [124740600.5859375, 125228881.8359375], [125473022.4609375, 138046264.6484375], [138168334.9609375, 146469116.2109375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [150619506.8359375, 163925170.8984375], [168563842.7734375, 182846069.3359375], [183090209.9609375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189193725.5859375, 189315795.8984375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [199813842.7734375, 199935913.0859375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [207138061.5234375, 207382202.1484375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [212631225.5859375, 217636108.3984375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375], [232894897.4609375, 233016967.7734375]] ex_ants: [[3, Jnn], [7, Jee], [9, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [34, Jnn], [35, Jee], [37, Jnn], [40, Jnn], [45, Jee], [45, Jnn], [47, Jee], [47, Jnn], [51, Jee], [55, Jee], [56, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [79, Jee], [81, Jee], [81, Jnn], [86, Jee], [86, Jnn], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [100, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [136, Jnn], [142, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [177, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [198, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [250, Jee], [251, Jee], [251, Jnn], [253, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [266, Jnn], [269, Jnn], [270, Jee], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [295, Jee], [295, Jnn], [320, Jnn], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 23.38 minutes.