Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1758 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460363/zen.2460363.25441.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1758 *.sum.smooth.calfits files starting with /mnt/sn1/2460363/zen.2460363.25441.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
20.819% of waterfall flagged to start. 35.104% of waterfall flagged after flagging z > 5.0 outliers. 42.375% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 31 integrations and 0 channels. Flagging 642 channels previously flagged 25.00% or more. Flagging 836 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 71.272% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1758 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460363/zen.2460363.25441.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460363/2460363_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460363.254302693, 2460363.262467605], [2460363.262579453, 2460363.26336239], [2460363.2634742376, 2460363.26392163], [2460363.264033478, 2460363.264592719], [2460363.264928263, 2460363.2650401113], [2460363.265599352, 2460363.2657112], [2460363.2662704405, 2460363.2663822887], [2460363.2669415292, 2460363.2670533773], [2460363.267612618, 2460363.267724466], [2460363.2679481623, 2460363.2682837066], [2460363.2683955547, 2460363.268507403], [2460363.269066643, 2460363.269178491], [2460363.269290339, 2460363.2694021873], [2460363.2697377317, 2460363.26984958], [2460363.2706325166, 2460363.271079909], [2460363.271191757, 2460363.2713036053], [2460363.2714154534, 2460363.2715273015], [2460363.274099808, 2460363.2743235044], [2460363.2748827445, 2460363.2749945926], [2460363.275330137, 2460363.2758893776], [2460363.28875191, 2460363.288975606], [2460363.291995505, 2460363.2955746446], [2460363.2956864927, 2460363.296133885], [2460363.3017262905, 2460363.302285531], [2460363.302397379, 2460363.307542392], [2460363.3077660883, 2460363.3123518606], [2460363.312687405, 2460363.312911101], [2460363.3131347974, 2460363.314029582], [2460363.31414143, 2460363.3145888224], [2460363.3147006705, 2460363.3148125187], [2460363.3174968734, 2460363.3177205697], [2460363.317832418, 2460363.317944266], [2460363.318056114, 2460363.3182798102], [2460363.3210760127, 2460363.321523405], [2460363.3239840637, 2460363.324431456], [2460363.3252143925, 2460363.3253262406], [2460363.327451355, 2460363.327563203], [2460363.327786899, 2460363.3278987473], [2460363.3332674564, 2460363.3334911526], [2460363.342327153, 2460363.342550849], [2460363.3440048746, 2460363.344228571], [2460363.3459062926, 2460363.346129989], [2460363.346241837, 2460363.346353685], [2460363.346465533, 2460363.3465773812], [2460363.3545185965, 2460363.3546304447], [2460363.3606702425, 2460363.361117635], [2460363.3626835085, 2460363.3627953567], [2460363.3783422434, 2460363.3785659396], [2460363.3829280157, 2460363.383151712], [2460363.392211409, 2460363.392323257], [2460363.395566852, 2460363.395790548], [2460363.3995933835, 2460363.399928928], [2460363.4040673077, 2460363.404179156], [2460363.4101071055, 2460363.4103308017], [2460363.41044265, 2460363.410666346], [2460363.4110018904, 2460363.4112255867], [2460363.412455916, 2460363.4129033084], [2460363.4173772326, 2460363.4174890807], [2460363.4202852836, 2460363.421291916], [2460363.422186701, 2460363.422298549], [2460363.42285779, 2460363.423081486], [2460363.4244236634, 2460363.424871056], [2460363.424982904, 2460363.425094752], [2460363.4269961696, 2460363.427331714], [2460363.431358246, 2460363.4314700942], [2460363.4316937905, 2460363.432141183], [2460363.433818904, 2460363.4339307523], [2460363.4350492335, 2460363.4351610816], [2460363.4361677147, 2460363.436279563], [2460363.436391411, 2460363.437398044], [2460363.437957284, 2460363.438069132], [2460363.4386283727, 2460363.438740221], [2460363.4414245756, 2460363.4415364238], [2460363.441648272, 2460363.44176012], [2460363.4420956643, 2460363.4422075124], [2460363.4423193606, 2460363.442543057], [2460363.442766753, 2460363.4431022974], [2460363.4433259936, 2460363.4434378417], [2460363.4435496894, 2460363.4436615375], [2460363.444220778, 2460363.444332626], [2460363.4448918668, 2460363.445003715], [2460363.445115563, 2460363.445227411], [2460363.4455629555, 2460363.4456748036], [2460363.4457866517, 2460363.4458985], [2460363.4463458923, 2460363.4465695885], [2460363.447128829, 2460363.447240677], [2460363.449253943, 2460363.449365791], [2460363.449589487, 2460363.4497013353], [2460363.4499250315, 2460363.4500368796], [2460363.452273842, 2460363.45238569], [2460363.454398956, 2460363.4545108043], [2460363.4550700444, 2460363.4551818925], [2460363.455629285, 2460363.455852981], [2460363.45652407, 2460363.456635918], [2460363.457642551, 2460363.4579780954], [2460363.4599913615, 2460363.4601032096], [2460363.4606624497, 2460363.460774298], [2460363.4613335384, 2460363.4614453865], [2460363.462004627, 2460363.462116475], [2460363.464017893, 2460363.4642415894], [2460363.464688982, 2460363.464912678], [2460363.491196983, 2460363.4914206793], [2460363.495559059, 2460363.495670907], [2460363.497572325, 2460363.4979078695], [2460363.498243414, 2460363.49846711], [2460363.5042832117, 2460363.504618756], [2460363.504730604, 2460363.5048424522], [2460363.5076386547, 2460363.507750503], [2460363.523744782, 2460363.5241921744], [2460363.524751415, 2460363.5251988075], [2460363.5254225037, 2460363.5286660986], [2460363.5304556685, 2460363.531014909], [2460363.531126757, 2460363.5314623015], [2460363.531797846, 2460363.5325807827], [2460363.5333637195, 2460363.5336992634], [2460363.5345940483, 2460363.5348177445], [2460363.535376985, 2460363.53627177], [2460363.536383618, 2460363.537166555], [2460363.537390251, 2460363.5379494918], [2460363.5398509093, 2460363.5399627574], [2460363.544324834, 2460363.549917239], [2460363.5500290873, 2460363.5502527836], [2460363.5524897454, 2460363.5527134417], [2460363.552937138, 2460363.555733341], [2460363.555845189, 2460363.556068885], [2460363.556292581, 2460363.5580821508], [2460363.558193999, 2460363.559424328], [2460363.5598717206, 2460363.5605428093], [2460363.560990202, 2460363.561213898], [2460363.5621086825, 2460363.563674556], [2460363.563786404, 2460363.5647930373], [2460363.5702735945, 2460363.5704972907], [2460363.5737408856, 2460363.574188278], [2460363.575866, 2460363.575977848], [2460363.5773200253, 2460363.5776555697], [2460363.5783266583, 2460363.5785503546], [2460363.5791095947, 2460363.579221443], [2460363.579333291, 2460363.5797806834], [2460363.5798925315, 2460363.580339924], [2460363.5808991645, 2460363.581346557], [2460363.5815702532, 2460363.585596785], [2460363.5862678736, 2460363.589399621], [2460363.589623317, 2460363.5943209375], [2460363.594992026, 2460363.5952157225], [2460363.5967815956, 2460363.597005292], [2460363.5974526843, 2460363.5985711655], [2460363.6113218497, 2460363.612887723], [2460363.613111419, 2460363.6161313183], [2460363.6162431664, 2460363.6172497994], [2460363.6187038245, 2460363.6189275207], [2460363.621052635, 2460363.621164483], [2460363.6247436223, 2460363.6258621034], [2460363.6259739515, 2460363.626309496], [2460363.626421344, 2460363.6267568883], [2460363.6268687365, 2460363.629888635], [2460363.6300004832, 2460363.631790053], [2460363.631901901, 2460363.647560636]] freq_flags: [[49301147.4609375, 49667358.3984375], [49789428.7109375, 52963256.8359375], [53695678.7109375, 53817749.0234375], [60531616.2109375, 60653686.5234375], [62240600.5859375, 62728881.8359375], [63217163.0859375, 63339233.3984375], [63461303.7109375, 63583374.0234375], [63705444.3359375, 63827514.6484375], [66513061.5234375, 67001342.7734375], [69931030.2734375, 70053100.5859375], [71151733.3984375, 71273803.7109375], [73837280.2734375, 74935913.0859375], [77865600.5859375, 78109741.2109375], [81283569.3359375, 81405639.6484375], [84945678.7109375, 85067749.0234375], [87509155.2734375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [111557006.8359375, 124374389.6484375], [124740600.5859375, 125350952.1484375], [125717163.0859375, 128036499.0234375], [129867553.7109375, 130233764.6484375], [130844116.2109375, 136703491.2109375], [136947631.8359375, 138046264.6484375], [138290405.2734375, 141830444.3359375], [142074584.9609375, 163436889.6484375], [163803100.5859375, 163925170.8984375], [164047241.2109375, 164169311.5234375], [164291381.8359375, 184555053.7109375], [187362670.8984375, 187606811.5234375], [189193725.5859375, 189315795.8984375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [195663452.1484375, 195785522.4609375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [207138061.5234375, 207382202.1484375], [208480834.9609375, 208724975.5859375], [209335327.1484375, 209457397.4609375], [209823608.3984375, 218368530.2734375], [218612670.8984375, 218734741.2109375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [34, Jnn], [35, Jee], [40, Jnn], [45, Jee], [45, Jnn], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [55, Jee], [56, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [127, Jee], [127, Jnn], [136, Jnn], [142, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [177, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [205, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [336, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 26.82 minutes.