Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1679 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460364/zen.2460364.25460.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1679 *.sum.smooth.calfits files starting with /mnt/sn1/2460364/zen.2460364.25460.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
52.708% of waterfall flagged to start. 63.913% of waterfall flagged after flagging z > 5.0 outliers. 65.520% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 45 integrations and 62 channels. Flagging 621 channels previously flagged 25.00% or more. Flagging 565 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 2 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 84.759% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1679 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460364/zen.2460364.25460.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460364/2460364_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460364.2544880137, 2460364.4398203264], [2460364.4401558707, 2460364.440267719], [2460364.4408269594, 2460364.4409388076], [2460364.4413862, 2460364.4416098963], [2460364.4420572887, 2460364.442280985], [2460364.442392833, 2460364.442504681], [2460364.4429520736, 2460364.4430639218], [2460364.44317577, 2460364.443287618], [2460364.446419365, 2460364.446531213], [2460364.448768175, 2460364.449439264], [2460364.4498866564, 2460364.4499985045], [2460364.450110352, 2460364.4502222002], [2460364.45615015, 2460364.456261998], [2460364.4576041754, 2460364.4577160235], [2460364.459170049, 2460364.459281897], [2460364.460959619, 2460364.4614070114], [2460364.47505248, 2460364.4753880245], [2460364.476059113, 2460364.4765065056], [2460364.4774012906, 2460364.4775131387], [2460364.478184227, 2460364.478296075], [2460364.4808685817, 2460364.481092278], [2460364.4815396704, 2460364.4818752147], [2460364.4850069615, 2460364.4851188096], [2460364.485454354, 2460364.485566202], [2460364.4900401263, 2460364.4901519744], [2460364.490934911, 2460364.4910467593], [2460364.4933955697, 2460364.493619266], [2460364.50636995, 2460364.5069291904], [2460364.5082713678, 2460364.508495064], [2460364.5088306083, 2460364.509501697], [2460364.509613545, 2460364.5098372414], [2460364.51050833, 2460364.5107320263], [2460364.5110675707, 2460364.511179419], [2460364.511626811, 2460364.5119623556], [2460364.514534862, 2460364.51464671], [2460364.516659976, 2460364.5171073684], [2460364.5172192166, 2460364.5173310647], [2460364.517890305, 2460364.518002153], [2460364.518114001, 2460364.5184495454], [2460364.5186732416, 2460364.5187850897], [2460364.5193443303, 2460364.5195680265], [2460364.5197917228, 2460364.520015419], [2460364.520798356, 2460364.522028685], [2460364.52292347, 2460364.523259014], [2460364.524265647, 2460364.524377495], [2460364.5250485837, 2460364.525160432], [2460364.5269500017, 2460364.52706185], [2460364.52941066, 2460364.529746204], [2460364.5298580523, 2460364.5300817485], [2460364.530640989, 2460364.530752837], [2460364.5317594702, 2460364.5320950146], [2460364.5329897995, 2460364.5332134957], [2460364.533437192, 2460364.533660888], [2460364.5345556727, 2460364.534667521], [2460364.538805901, 2460364.538917749], [2460364.5392532935, 2460364.53947699], [2460364.5404836223, 2460364.5413784073], [2460364.5416021035, 2460364.5423850403], [2460364.542832433, 2460364.5437272177], [2460364.544062762, 2460364.5445101545], [2460364.544845699, 2460364.544957547], [2460364.545069395, 2460364.5452930913], [2460364.546411572, 2460364.5468589645], [2460364.5470826607, 2460364.5477537494], [2460364.5478655975, 2460364.5495433193], [2460364.550438104, 2460364.5508854967], [2460364.5522276736, 2460364.55245137], [2460364.5533461547, 2460364.553569851], [2460364.5540172434, 2460364.5541290916], [2460364.554464636, 2460364.554576484], [2460364.5560305095, 2460364.5568134463], [2460364.5573726865, 2460364.5575963827], [2460364.558043775, 2460364.5582674714], [2460364.5586030157, 2460364.558826712], [2460364.559050408, 2460364.5591622563], [2460364.5605044337, 2460364.56072813], [2460364.5615110667, 2460364.561622915], [2460364.5620703073, 2460364.5621821554], [2460364.5644191173, 2460364.5648665098], [2460364.566208687, 2460364.5663205353], [2460364.5674390164, 2460364.567886409], [2460364.568110105, 2460364.568557497], [2460364.5779527384, 2460364.5780645865], [2460364.5814200295, 2460364.581755574], [2460364.5842162324, 2460364.5844399286], [2460364.584775473, 2460364.584999169], [2460364.5865650424, 2460364.5867887386], [2460364.5869005867, 2460364.587012435], [2460364.5883546122, 2460364.5884664604], [2460364.588913853, 2460364.589249397], [2460364.591262663, 2460364.591374511], [2460364.5949536506, 2460364.595177347], [2460364.595401043, 2460364.5956247393], [2460364.5958484355, 2460364.5965195238], [2460364.5990920304, 2460364.5993157267], [2460364.6012171446, 2460364.601440841], [2460364.6024474734, 2460364.6025593216], [2460364.6035659546, 2460364.6210080455], [2460364.62134359, 2460364.621567286], [2460364.623356856, 2460364.623580552], [2460364.625705666, 2460364.625929362], [2460364.6260412103, 2460364.626712299], [2460364.626824147, 2460364.627607084], [2460364.627718932, 2460364.6281663245], [2460364.6282781726, 2460364.6283900207], [2460364.628725565, 2460364.6289492613], [2460364.6291729575, 2460364.62962035], [2460364.629844046, 2460364.630291438], [2460364.6305151344, 2460364.6315217675], [2460364.6316336156, 2460364.6324165524], [2460364.6325284005, 2460364.6327520967], [2460364.633199489, 2460364.6336468817], [2460364.633870578, 2460364.6346535147], [2460364.634877211, 2460364.6356601478], [2460364.6357719954, 2460364.636219388], [2460364.636443084, 2460364.6367786285], [2460364.6368904766, 2460364.6377852615], [2460364.6380089577, 2460364.639015591], [2460364.639239287, 2460364.641140705], [2460364.641811793, 2460364.6420354894], [2460364.642482882, 2460364.6431539706], [2460364.643377667, 2460364.643601363], [2460364.643713211, 2460364.6439369074], [2460364.6440487555, 2460364.644496148], [2460364.644607996, 2460364.644719844], [2460364.645279085, 2460364.645502781], [2460364.6457264773, 2460364.6461738697], [2460364.646285718, 2460364.6470686547], [2460364.6472923504, 2460364.6476278948]] freq_flags: [[47592163.0859375, 47836303.7109375], [48568725.5859375, 66024780.2734375], [66146850.5859375, 70297241.2109375], [71151733.3984375, 71273803.7109375], [74203491.2109375, 74447631.8359375], [74813842.7734375, 77011108.3984375], [87387084.9609375, 108749389.6484375], [108993530.2734375, 119247436.5234375], [119857788.0859375, 119979858.3984375], [121566772.4609375, 122055053.7109375], [122421264.6484375, 122543334.9609375], [122787475.5859375, 122909545.8984375], [123031616.2109375, 123397827.1484375], [123641967.7734375, 124252319.3359375], [124740600.5859375, 125228881.8359375], [125717163.0859375, 130477905.2734375], [130599975.5859375, 130722045.8984375], [130966186.5234375, 131088256.8359375], [131210327.1484375, 131454467.7734375], [131698608.3984375, 138046264.6484375], [138168334.9609375, 141098022.4609375], [141220092.7734375, 143417358.3984375], [143539428.7109375, 143661499.0234375], [143783569.3359375, 144027709.9609375], [144271850.5859375, 150863647.4609375], [151840209.9609375, 151962280.2734375], [152084350.5859375, 152206420.8984375], [152938842.7734375, 153671264.6484375], [153915405.2734375, 162338256.8359375], [162460327.1484375, 162582397.4609375], [168197631.8359375, 168319702.1484375], [168441772.4609375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171127319.3359375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [174911499.0234375, 175399780.2734375], [178695678.7109375, 178817749.0234375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [184310913.0859375, 186752319.3359375], [187362670.8984375, 187606811.5234375], [189071655.2734375, 194198608.3984375], [195053100.5859375, 195907592.7734375], [196029663.0859375, 196273803.7109375], [197006225.5859375, 197494506.8359375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [199813842.7734375, 199935913.0859375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206283569.3359375, 206405639.6484375], [207138061.5234375, 207382202.1484375], [207626342.7734375, 207748413.0859375], [208114624.0234375, 211410522.4609375], [211532592.7734375, 212631225.5859375], [215194702.1484375, 215316772.4609375], [216903686.5234375, 217025756.8359375], [220565795.8984375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375], [232284545.8984375, 232406616.2109375], [232650756.8359375, 232772827.1484375], [232894897.4609375, 233261108.3984375], [233383178.7109375, 233505249.0234375]] ex_ants: [[3, Jnn], [7, Jee], [10, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [34, Jnn], [35, Jee], [40, Jnn], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [55, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [83, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [130, Jnn], [132, Jee], [132, Jnn], [136, Jnn], [142, Jnn], [147, Jee], [147, Jnn], [148, Jee], [148, Jnn], [149, Jee], [149, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [177, Jee], [180, Jnn], [183, Jee], [183, Jnn], [184, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [204, Jnn], [205, Jee], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [213, Jee], [217, Jee], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [320, Jnn], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jnn], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jnn], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.4.2.dev11+ga9e1297 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 26.58 minutes.