Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1749 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460365/zen.2460365.25454.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1749 *.sum.smooth.calfits files starting with /mnt/sn1/2460365/zen.2460365.25454.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
22.365% of waterfall flagged to start. 40.943% of waterfall flagged after flagging z > 5.0 outliers. 44.611% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags. Flagging an additional 4 integrations and 0 channels. Flagging 577 channels previously flagged 25.00% or more. Flagging 817 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 68.138% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1749 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460365/zen.2460365.25454.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460365/2460365_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460365.2544298363, 2460365.288543509], [2460365.288655357, 2460365.288879053], [2460365.2889909013, 2460365.289438294], [2460365.289550142, 2460365.28966199], [2460365.289773838, 2460365.2902212306], [2460365.2913397118, 2460365.291563408], [2460365.2917871037, 2460365.291898952], [2460365.2920108, 2460365.2923463443], [2460365.292793737, 2460365.292905585], [2460365.293017433, 2460365.2933529774], [2460365.294135914, 2460365.2942477623], [2460365.2984979902, 2460365.2986098384], [2460365.301294193, 2460365.3014060413], [2460365.3017415856, 2460365.3018534337], [2460365.301965282, 2460365.302188978], [2460365.302300826, 2460365.3024126743], [2460365.3025245224, 2460365.3026363705], [2460365.3031956106, 2460365.3033074588], [2460365.3068865985, 2460365.3069984466], [2460365.308788016, 2460365.3091235603], [2460365.315946295, 2460365.316058143], [2460365.3167292317, 2460365.317064776], [2460365.3174003204, 2460365.320532067], [2460365.3228808776, 2460365.323104574], [2460365.323216422, 2460365.32332827], [2460365.3235519663, 2460365.323999359], [2460365.3269074094, 2460365.3271311056], [2460365.3279140424, 2460365.3280258905], [2460365.3281377386, 2460365.3282495867], [2460365.3333945996, 2460365.333618296], [2460365.333841992, 2460365.3342893845], [2460365.334736777, 2460365.3351841695], [2460365.335855258, 2460365.336526347], [2460365.336638195, 2460365.337085587], [2460365.341112119, 2460365.3426779923], [2460365.3427898404, 2460365.3439083216], [2460365.3440201697, 2460365.3458097395], [2460365.346145284, 2460365.347263765], [2460365.347375613, 2460365.3478230056], [2460365.3479348533, 2460365.3482703976], [2460365.3483822457, 2460365.348605942], [2460365.34871779, 2460365.3490533344], [2460365.3492770307, 2460365.3502836637], [2460365.350395512, 2460365.350619208], [2460365.350731056, 2460365.3510666005], [2460365.3511784486, 2460365.352408778], [2460365.352520626, 2460365.3529680185], [2460365.353415411, 2460365.353639107], [2460365.3545338917, 2460365.354757588], [2460365.3555405247, 2460365.355652373], [2460365.3629225, 2460365.363034348], [2460365.3632580442, 2460365.3634817405], [2460365.3635935886, 2460365.363817285], [2460365.363929133, 2460365.364152829], [2460365.3647120697, 2460365.364935766], [2460365.3651594617, 2460365.365383158], [2460365.366166095, 2460365.366501639], [2460365.3666134872, 2460365.3668371835], [2460365.3669490316, 2460365.3676201203], [2460365.3677319684, 2460365.3679556646], [2460365.368179361, 2460365.3686267533], [2460365.3751139436, 2460365.3752257917], [2460365.3846210325, 2460365.3847328806], [2460365.391443767, 2460365.3915556152], [2460365.3928977926, 2460365.3931214884], [2460365.3960295394, 2460365.3970361724], [2460365.414484477, 2460365.4145963253], [2460365.4255574397, 2460365.4261166803], [2460365.427123313, 2460365.4275707053], [2460365.4276825534, 2460365.42846549], [2460365.438755516, 2460365.4393147565], [2460365.439650301, 2460365.439762149], [2460365.451394352, 2460365.4517298965], [2460365.4538550107, 2460365.454190555], [2460365.4545260994, 2460365.4560919725], [2460365.4562038206, 2460365.456539365], [2460365.461908074, 2460365.4622436184], [2460365.4652635176, 2460365.4659346063], [2460365.4685071125, 2460365.4687308087], [2460365.468954505, 2460365.469066353], [2460365.473204733, 2460365.473540277], [2460365.493784785, 2460365.494008481], [2460365.494120329, 2460365.494567721], [2460365.4949032655, 2460365.4951269617], [2460365.49523881, 2460365.4956862023], [2460365.4970283797, 2460365.497252076], [2460365.4975876203, 2460365.4980350127], [2460365.4985942533, 2460365.4989297977], [2460365.49937719, 2460365.4998245826], [2460365.500719367, 2460365.5009430633], [2460365.5010549114, 2460365.5013904558], [2460365.501502304, 2460365.5022852407], [2460365.502397089, 2460365.502620785], [2460365.5028444813, 2460365.5030681775], [2460365.50351557, 2460365.503739266], [2460365.505976228, 2460365.506088076], [2460365.519398001, 2460365.5196216973], [2460365.5312539004, 2460365.5314775966], [2460365.5346093434, 2460365.5348330396], [2460365.5374055463, 2460365.5376292425], [2460365.5461296984, 2460365.5463533946], [2460365.546577091, 2460365.546800787], [2460365.5472481796, 2460365.547471876], [2460365.5491495975, 2460365.5493732938], [2460365.54959699, 2460365.549820686], [2460365.550939167, 2460365.551162863], [2460365.5517221037, 2460365.5523931924], [2460365.5526168887, 2460365.553064281], [2460365.5535116736, 2460365.55373537], [2460365.555748636, 2460365.5561960284], [2460365.5568671166, 2460365.557090813], [2460365.557202661, 2460365.5578737496], [2460365.558321142, 2460365.5586566865], [2460365.56257137, 2460365.5627950663], [2460365.5629069144, 2460365.5631306106], [2460365.5632424587, 2460365.563466155], [2460365.5640253955, 2460365.564249092], [2460365.565367573, 2460365.565591269], [2460365.567604535, 2460365.567828231], [2460365.567940079, 2460365.5681637754], [2460365.5684993197, 2460365.568723016], [2460365.568946712, 2460365.5691704084], [2460365.570512586, 2460365.570736282], [2460365.5714073707, 2460365.571854763], [2460365.584717295, 2460365.5849409914], [2460365.585500232, 2460365.58561208], [2460365.599145701, 2460365.5993693974], [2460365.6002641823, 2460365.600711575], [2460365.6017182074, 2460365.6026129923], [2460365.6027248404, 2460365.6089883344], [2460365.6091001825, 2460365.609435727], [2460365.609547575, 2460365.610330512], [2460365.6118963854, 2460365.6121200817], [2460365.612903018, 2460365.6131267142], [2460365.6135741067, 2460365.613797803], [2460365.6141333473, 2460365.6143570435], [2460365.614692588, 2460365.614804436], [2460365.6153636766, 2460365.6154755247], [2460365.615587373, 2460365.615922917], [2460365.6160347653, 2460365.622186411], [2460365.6226338036, 2460365.625541854], [2460365.6256537023, 2460365.6258773985], [2460365.6259892466, 2460365.626436639], [2460365.626548487, 2460365.627107728], [2460365.627219576, 2460365.6285617533], [2460365.6286736014, 2460365.6288972977], [2460365.629009146, 2460365.629568386], [2460365.629792082, 2460365.6302394746], [2460365.630463171, 2460365.631581652], [2460365.6316935, 2460365.633594918], [2460365.633706766, 2460365.634489703], [2460365.634713399, 2460365.635160791], [2460365.6353844875, 2460365.6354963356], [2460365.6356081837, 2460365.63583188], [2460365.635943728, 2460365.6361674243], [2460365.6363911205, 2460365.63762145], [2460365.637733298, 2460365.6384043866], [2460365.638739931, 2460365.63997026], [2460365.6401939564, 2460365.6403058046], [2460365.640529501, 2460365.6408650447], [2460365.640976893, 2460365.641200589], [2460365.6414242852, 2460365.6417598296], [2460365.6418716777, 2460365.6426546145], [2460365.6427664626, 2460365.647352235]] freq_flags: [[48934936.5234375, 53939819.3359375], [62240600.5859375, 62850952.1484375], [66390991.2109375, 67001342.7734375], [69931030.2734375, 70053100.5859375], [73959350.5859375, 74325561.5234375], [74813842.7734375, 74935913.0859375], [81283569.3359375, 81527709.9609375], [87509155.2734375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [110824584.9609375, 122909545.8984375], [123519897.4609375, 134140014.6484375], [135116577.1484375, 135238647.4609375], [136337280.2734375, 136459350.5859375], [136703491.2109375, 136825561.5234375], [136947631.8359375, 138046264.6484375], [138534545.8984375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142929077.1484375, 143051147.4609375], [143539428.7109375, 143661499.0234375], [143783569.3359375, 144027709.9609375], [144638061.5234375, 144760131.8359375], [145492553.7109375, 146102905.2734375], [147445678.7109375, 147567749.0234375], [148178100.5859375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155868530.2734375, 156112670.8984375], [156234741.2109375, 161239624.0234375], [161361694.3359375, 161483764.6484375], [169174194.3359375, 169296264.6484375], [169784545.8984375, 170394897.4609375], [170516967.7734375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [173934936.5234375, 174545288.0859375], [174911499.0234375, 175399780.2734375], [177963256.8359375, 178085327.1484375], [178695678.7109375, 178817749.0234375], [179672241.2109375, 179794311.5234375], [181137084.9609375, 181381225.5859375], [183212280.2734375, 183334350.5859375], [185287475.5859375, 187118530.2734375], [187240600.5859375, 189315795.8984375], [189437866.2109375, 189559936.5234375], [189926147.4609375, 190048217.7734375], [190902709.9609375, 191635131.8359375], [192367553.7109375, 216171264.6484375], [216903686.5234375, 217025756.8359375], [220565795.8984375, 220809936.5234375], [221176147.4609375, 227157592.7734375], [227401733.3984375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375], [232284545.8984375, 232406616.2109375], [232528686.5234375, 233505249.0234375]] ex_ants: [[3, Jnn], [5, Jee], [10, Jee], [18, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [35, Jee], [37, Jee], [37, Jnn], [40, Jnn], [41, Jee], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [54, Jee], [56, Jee], [56, Jnn], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [71, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [85, Jee], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [93, Jee], [93, Jnn], [94, Jee], [94, Jnn], [95, Jee], [97, Jnn], [98, Jnn], [99, Jee], [99, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [112, Jee], [114, Jee], [114, Jnn], [115, Jee], [115, Jnn], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [125, Jee], [136, Jnn], [142, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [174, Jee], [174, Jnn], [176, Jee], [177, Jee], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [202, Jnn], [204, Jnn], [205, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [217, Jee], [218, Jnn], [229, Jee], [232, Jee], [232, Jnn], [243, Jee], [245, Jnn], [251, Jee], [253, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [266, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [283, Jee], [283, Jnn], [320, Jnn], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jnn], [336, Jnn], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev4+gb043105 hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.0 hera_notebook_templates: 0.1.dev486+gfb8560a pyuvdata: 2.4.0
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 179.76 minutes.