Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1861 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460412/zen.2460412.16903.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1861 *.sum.smooth.calfits files starting with /mnt/sn1/2460412/zen.2460412.16903.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
24.654% of waterfall flagged to start. 25.746% of waterfall flagged after flagging z > 5.0 outliers.
25.981% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 7 channels. Flagging 21 channels previously flagged 25.00% or more. Flagging 28 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 2 channels. Flagging 1 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 27.711% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1861 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460412/zen.2460412.16903.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460412/2460412_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460412.1689200723, 2460412.176525743], [2460412.1806641235, 2460412.180999668], [2460412.181782604, 2460412.1821181485], [2460412.1872631614, 2460412.187710554], [2460412.1966584027, 2460412.196882099], [2460412.199342757, 2460412.199454605], [2460412.1997901495, 2460412.1999019976], [2460412.200125694, 2460412.20034939], [2460412.2015797193, 2460412.2016915674], [2460412.2028100486, 2460412.2029218967], [2460412.2049351623, 2460412.2051588586], [2460412.2103038714, 2460412.2104157195], [2460412.219139872, 2460412.2192517202], [2460412.2246204293, 2460412.2248441256], [2460412.2249559737, 2460412.22517967], [2460412.225291518, 2460412.225403366], [2460412.2302128347, 2460412.230436531], [2460412.233009037, 2460412.2332327333], [2460412.23401567, 2460412.2341275183], [2460412.2342393664, 2460412.2343512145], [2460412.2344630626, 2460412.2345749107], [2460412.2352459994, 2460412.2353578475], [2460412.2354696956, 2460412.23580524], [2460412.238936987, 2460412.239272531], [2460412.2426279746, 2460412.2427398227], [2460412.253589089, 2460412.253700937], [2460412.256161595, 2460412.2564971396], [2460412.258063013, 2460412.2582867094], [2460412.2583985575, 2460412.258622254], [2460412.2634317223, 2460412.2638791148], [2460412.263990963, 2460412.264102811], [2460412.2677937984, 2460412.2679056465], [2460412.27126109, 2460412.271372938], [2460412.27182033, 2460412.271932178], [2460412.2720440263, 2460412.2722677225], [2460412.2741691405, 2460412.2743928367], [2460412.286360584, 2460412.2864724323], [2460412.286919825, 2460412.287143521], [2460412.2874790654, 2460412.2875909135], [2460412.2907226603, 2460412.2908345084], [2460412.3032496483, 2460412.3033614964], [2460412.3035851927, 2460412.303808889], [2460412.3045918257, 2460412.305039218], [2460412.3057103064, 2460412.3059340026], [2460412.308394661, 2460412.3085065093], [2460412.3105197754, 2460412.3107434716], [2460412.3130922816, 2460412.3132041297], [2460412.313315978, 2460412.313651522], [2460412.314434459, 2460412.3147700033], [2460412.3234941554, 2460412.3236060035], [2460412.3237178517, 2460412.323941548], [2460412.3279680796, 2460412.3280799277], [2460412.328415472, 2460412.3286391683], [2460412.330428738, 2460412.3305405863], [2460412.337363321, 2460412.337475169], [2460412.3392647384, 2460412.3394884346], [2460412.3411661563, 2460412.3413898526], [2460412.3434031187, 2460412.343626815], [2460412.344633448, 2460412.344857144], [2460412.353133904, 2460412.353245752], [2460412.3621936003, 2460412.3623054484], [2460412.37639831, 2460412.3767338544], [2460412.377516791, 2460412.3777404875], [2460412.37874712, 2460412.3789708163], [2460412.379753753, 2460412.379865601], [2460412.3813196267, 2460412.381543323], [2460412.382549956, 2460412.382773652], [2460412.384786918, 2460412.384898766], [2460412.385793551, 2460412.385905399], [2460412.3882542094, 2460412.3883660575], [2460412.3914978043, 2460412.3918333487], [2460412.392168893, 2460412.392280741], [2460412.4008930456, 2460412.4010048937], [2460412.4021233744, 2460412.4022352225], [2460412.4033537037, 2460412.403689248], [2460412.403801096, 2460412.4040247924], [2460412.405814362, 2460412.4059262103], [2460412.4105119826, 2460412.410735679], [2460412.4126370964, 2460412.4128607926], [2460412.4138674256, 2460412.4139792738], [2460412.416104388, 2460412.416216236], [2460412.416328084, 2460412.4165517804], [2460412.421361249, 2460412.421584945], [2460412.424604844, 2460412.424716692], [2460412.4272891986, 2460412.4274010467], [2460412.427848439, 2460412.4280721354], [2460412.42840768, 2460412.428519528], [2460412.429973553, 2460412.4307564897], [2460412.430868338, 2460412.430980186], [2460412.438138465, 2460412.438250313], [2460412.4410465155, 2460412.44138206], [2460412.441493908, 2460412.441717604], [2460412.4439545665, 2460412.4440664146], [2460412.444401959, 2460412.444513807], [2460412.4450730477, 2460412.445184896], [2460412.4460796807, 2460412.446191529], [2460412.446750769, 2460412.446974465], [2460412.4470863133, 2460412.4473100095], [2460412.4474218576, 2460412.4475337057], [2460412.4492114275, 2460412.4493232756], [2460412.44965882, 2460412.449882516], [2460412.452231326, 2460412.4526787186], [2460412.4545801366, 2460412.4546919847], [2460412.4553630734, 2460412.4554749215], [2460412.4576000352, 2460412.4579355796], [2460412.4607317825, 2460412.4609554787], [2460412.461402871, 2460412.4615147193], [2460412.4661004916, 2460412.466324188], [2460412.468896694, 2460412.4691203902], [2460412.471581049, 2460412.4720284413], [2460412.4731469224, 2460412.4732587705], [2460412.4744890993, 2460412.475272036], [2460412.4753838843, 2460412.4754957324], [2460412.4782919353, 2460412.4784037834], [2460412.4816473783, 2460412.4817592264], [2460412.4833251, 2460412.483436948], [2460412.4846672774, 2460412.4847791255], [2460412.486456847, 2460412.486568695], [2460412.510839734, 2460412.5109515823], [2460412.5110634305, 2460412.5112871267], [2460412.515984747, 2460412.516096595], [2460412.51934019, 2460412.5195638863], [2460412.527505102, 2460412.52761695], [2460412.5446178624, 2460412.5447297106], [2460412.5508813565, 2460412.5509932046], [2460412.555690825, 2460412.555802673], [2460412.583876548, 2460412.583988396]] freq_flags: [[49911499.0234375, 50155639.6484375], [53695678.7109375, 53817749.0234375], [62240600.5859375, 62728881.8359375], [65902709.9609375, 66024780.2734375], [66146850.5859375, 66635131.8359375], [66757202.1484375, 66879272.4609375], [69931030.2734375, 70053100.5859375], [73959350.5859375, 74081420.8984375], [74203491.2109375, 75180053.7109375], [77377319.3359375, 77499389.6484375], [77621459.9609375, 78353881.8359375], [81283569.3359375, 81405639.6484375], [87265014.6484375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [132675170.8984375, 132797241.2109375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [144638061.5234375, 144760131.8359375], [145492553.7109375, 145736694.3359375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148178100.5859375, 148422241.2109375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [158187866.2109375, 158309936.5234375], [159164428.7109375, 159286499.0234375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [186386108.3984375, 186508178.7109375], [187362670.8984375, 187606811.5234375], [189682006.8359375, 189804077.1484375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [196395874.0234375, 196517944.3359375], [196884155.2734375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206893920.8984375, 207015991.2109375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [210433959.9609375, 210556030.2734375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [222763061.5234375, 223617553.7109375], [227401733.3984375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375], [233016967.7734375, 233139038.0859375]] ex_ants: [[3, Jnn], [5, Jee], [7, Jee], [18, Jee], [18, Jnn], [21, Jee], [21, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [53, Jnn], [54, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jnn], [68, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [82, Jee], [82, Jnn], [83, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [98, Jee], [98, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [112, Jee], [115, Jee], [115, Jnn], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [130, Jee], [130, Jnn], [134, Jnn], [136, Jnn], [140, Jee], [161, Jnn], [162, Jee], [163, Jee], [163, Jnn], [170, Jee], [171, Jnn], [174, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [180, Jnn], [182, Jnn], [183, Jee], [183, Jnn], [186, Jnn], [187, Jnn], [188, Jnn], [189, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [204, Jnn], [208, Jee], [208, Jnn], [209, Jnn], [212, Jnn], [216, Jee], [217, Jee], [217, Jnn], [218, Jee], [218, Jnn], [229, Jee], [231, Jnn], [232, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [251, Jee], [255, Jee], [255, Jnn], [256, Jee], [256, Jnn], [262, Jnn], [266, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev6+gf0cfd8d hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 55.54 minutes.