Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1673 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/2460417/zen.2460417.21094.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1673 *.sum.smooth.calfits files starting with /mnt/sn1/2460417/zen.2460417.21094.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
27.889% of waterfall flagged to start. 29.692% of waterfall flagged after flagging z > 5.0 outliers.
30.057% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 10 channels. Flagging 25 channels previously flagged 25.00% or more. Flagging 136 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 7 channels. Flagging 2 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 34.482% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1673 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/2460417/zen.2460417.21094.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/2460417/2460417_aposteriori_flags.yaml ------------------------------------------------------------------------ JD_flags: [[2460417.2108303444, 2460417.2207848257], [2460417.22112037, 2460417.221232218], [2460417.2214559144, 2460417.221791459], [2460417.221903307, 2460417.222015155], [2460417.2223506994, 2460417.2224625475], [2460417.22290994, 2460417.223021788], [2460417.223133636, 2460417.2235810286], [2460417.223804725, 2460417.224140269], [2460417.2244758136, 2460417.2246995093], [2460417.2250350537, 2460417.225146902], [2460417.225482446, 2460417.2255942943], [2460417.2259298386, 2460417.2260416867], [2460417.226265383, 2460417.226377231], [2460417.2268246235, 2460417.2270483198], [2460417.227495712, 2460417.2276075603], [2460417.2277194085, 2460417.2278312566], [2460417.228054953, 2460417.228390497], [2460417.229173434, 2460417.229285282], [2460417.230068219, 2460417.230180067], [2460417.230403763, 2460417.230627459], [2460417.2308511552, 2460417.2309630034], [2460417.2312985477, 2460417.231522244], [2460417.23174594, 2460417.2318577883], [2460417.2319696364, 2460417.2320814845], [2460417.232752573, 2460417.2328644213], [2460417.2330881176, 2460417.2331999657], [2460417.2338710544, 2460417.2339829025], [2460417.234653991, 2460417.2347658393], [2460417.2348776874, 2460417.2352132318], [2460417.235548776, 2460417.235660624], [2460417.2357724723, 2460417.2358843205], [2460417.235996168, 2460417.236108016], [2460417.2365554087, 2460417.236667257], [2460417.2372264974, 2460417.2373383455], [2460417.2375620417, 2460417.237897586], [2460417.2383449785, 2460417.2384568267], [2460417.238792371, 2460417.2390160672], [2460417.2391279154, 2460417.2392397635], [2460417.2393516116, 2460417.239687156], [2460417.2400227003, 2460417.2401345484], [2460417.2413648777, 2460417.241476726], [2460417.2417004216, 2460417.2418122697], [2460417.2425952065, 2460417.2427070546], [2460417.242930751, 2460417.243266295], [2460417.2436018395, 2460417.2437136876], [2460417.244049232, 2460417.24416108], [2460417.2457269537, 2460417.245838802], [2460417.246174346, 2460417.2462861943], [2460417.247628371, 2460417.248187612], [2460417.249194245, 2460417.249306093], [2460417.2496416373, 2460417.2497534854], [2460417.25008903, 2460417.250200878], [2460417.250424574, 2460417.2505364222], [2460417.2506482704, 2460417.2507601185], [2460417.2508719666, 2460417.2509838147], [2460417.2518785996, 2460417.2519904478], [2460417.2526615364, 2460417.252885232], [2460417.2538918653, 2460417.2541155615], [2460417.2542274096, 2460417.254562954], [2460417.2548984983, 2460417.2550103464], [2460417.2552340426, 2460417.2553458908], [2460417.2561288276, 2460417.2562406757], [2460417.256464372, 2460417.25657622], [2460417.2569117644, 2460417.2570236125], [2460417.258701334, 2460417.258813182], [2460417.25892503, 2460417.259036878], [2460417.2595961187, 2460417.259707967], [2460417.2621686254, 2460417.2622804735], [2460417.2623923216, 2460417.262616018], [2460417.262727866, 2460417.262951562], [2460417.264181891, 2460417.2646292835], [2460417.267089942, 2460417.2674254864], [2460417.2675373345, 2460417.2676491826], [2460417.269103208, 2460417.269215056], [2460417.2698861444, 2460417.270221689], [2460417.27312974, 2460417.273241588], [2460417.273353436, 2460417.2736889804], [2460417.275925942, 2460417.2761496385], [2460417.2762614866, 2460417.276485183], [2460417.2831960693, 2460417.2833079174], [2460417.28375531, 2460417.283867158], [2460417.284873791, 2460417.284985639], [2460417.285768576, 2460417.285880424], [2460417.2867752085, 2460417.2868870567], [2460417.288005538, 2460417.288341082], [2460417.289012171, 2460417.289124019], [2460417.289235867, 2460417.289347715], [2460417.289906956, 2460417.290018804], [2460417.2921439176, 2460417.2922557658], [2460417.292479462, 2460417.29259131], [2460417.292703158, 2460417.2928150063], [2460417.2929268545, 2460417.2930387026], [2460417.293374247, 2460417.293486095], [2460417.293597943, 2460417.2937097913], [2460417.2939334875, 2460417.2940453356], [2460417.294492728, 2460417.294604576], [2460417.2950519687, 2460417.295163817], [2460417.2956112092, 2460417.2958349055], [2460417.2966178423, 2460417.2967296904], [2460417.297177083, 2460417.297400779], [2460417.2976244753, 2460417.2977363234], [2460417.297848171, 2460417.297960019], [2460417.2981837154, 2460417.2984074117], [2460417.298854804, 2460417.2989666522], [2460417.2993021966, 2460417.2994140447], [2460417.300644374, 2460417.300756222], [2460417.3010917665, 2460417.301651007], [2460417.3018747033, 2460417.3023220957], [2460417.302769488, 2460417.3028813363], [2460417.3029931844, 2460417.3031050325], [2460417.3032168807, 2460417.303328729], [2460417.303999817, 2460417.304111665], [2460417.304894602, 2460417.30500645], [2460417.3063486274, 2460417.3071315642], [2460417.308026349, 2460417.3081381973], [2460417.310263311, 2460417.3104870073], [2460417.311158096, 2460417.311269944], [2460417.3125002733, 2460417.3127239696], [2460417.313059514, 2460417.31328321], [2460417.3145135394, 2460417.3146253875], [2460417.315296476, 2460417.315408324], [2460417.318204527, 2460417.3186519193], [2460417.3187637674, 2460417.3189874636], [2460417.3198822485, 2460417.3199940966], [2460417.3203296405, 2460417.3204414886], [2460417.3211125773, 2460417.3212244255], [2460417.3230139953, 2460417.3233495397], [2460417.3241324765, 2460417.324468021], [2460417.3251391095, 2460417.325474654], [2460417.3264812864, 2460417.326928679], [2460417.328830097, 2460417.328941945], [2460417.3305078186, 2460417.3306196667], [2460417.3312907554, 2460417.3315144517], [2460417.332409236, 2460417.332521084], [2460417.3339751097, 2460417.334310654], [2460417.3355409834, 2460417.3356528315], [2460417.3451599204, 2460417.3453836166], [2460417.3454954647, 2460417.345719161], [2460417.345831009, 2460417.345942857], [2460417.35108787, 2460417.3513115663], [2460417.3524300475, 2460417.3526537437], [2460417.3594764783, 2460417.3597001745], [2460417.3628319213, 2460417.363279314], [2460417.363391162, 2460417.363614858], [2460417.36585182, 2460417.365963668], [2460417.375023365, 2460417.375135213], [2460417.3763655424, 2460417.3765892386], [2460417.3771484788, 2460417.377260327], [2460417.3780432637, 2460417.37826696], [2460417.3786025043, 2460417.3787143524], [2460417.3817342515, 2460417.3818460996], [2460417.3824053397, 2460417.382629036], [2460417.3852015426, 2460417.3853133908], [2460417.387662201, 2460417.3877740493], [2460417.3886688338, 2460417.388780682], [2460417.391017644, 2460417.3911294923], [2460417.394261239, 2460417.3947086316], [2460417.3957152646, 2460417.3958271127], [2460417.3963863533, 2460417.3964982014], [2460417.4133872655, 2460417.4134991136], [2460417.417190101, 2460417.417301949], [2460417.4213284813, 2460417.4214403294], [2460417.422670658, 2460417.4227825063], [2460417.4239009875, 2460417.4240128356], [2460417.43083557, 2460417.4309474183], [2460417.4355331906, 2460417.4356450387], [2460417.435756887, 2460417.435868735], [2460417.4382175454, 2460417.4384412416], [2460417.4385530893, 2460417.4388886336], [2460417.439336026, 2460417.4395597223], [2460417.440342659, 2460417.4409018997], [2460417.441013748, 2460417.441125596], [2460417.4414611403, 2460417.442132229], [2460417.442915166, 2460417.44325071], [2460417.4436981026, 2460417.443921799], [2460417.444481039, 2460417.444704735], [2460417.4450402795, 2460417.4451521276], [2460417.4452639758, 2460417.445487672], [2460417.4458232163, 2460417.4459350645], [2460417.4576791157, 2460417.457790964], [2460417.461481951, 2460417.4617056474], [2460417.4636070654, 2460417.4637189135], [2460417.468416534, 2460417.468528382], [2460417.4930231175, 2460417.493246814], [2460417.496602257, 2460417.496714105], [2460417.497832586, 2460417.4980562823], [2460417.501188029, 2460417.5015235734], [2460417.503201295, 2460417.5033131433], [2460417.5035368395, 2460417.5036486876], [2460417.5037605357, 2460417.503872384], [2460417.525235372, 2460417.5253472202], [2460417.5255709165, 2460417.5256827646], [2460417.526242005, 2460417.5263538533], [2460417.526913094, 2460417.527024942], [2460417.527248638, 2460417.5273604863], [2460417.5276960307, 2460417.527919727], [2460417.5316107143, 2460417.5317225624], [2460417.5327291954, 2460417.5329528917], [2460417.5335121322, 2460417.534071373], [2460417.537538664, 2460417.5378742083], [2460417.5379860564, 2460417.5383216008], [2460417.547269449, 2460417.547381297], [2460417.5506248926, 2460417.5507367407], [2460417.551295981, 2460417.551407829], [2460417.5519670695, 2460417.5520789176], [2460417.552638158, 2460417.5527500063], [2460417.553309247, 2460417.553421095], [2460417.5540921837, 2460417.554204032], [2460417.556776538, 2460417.556888386], [2460417.5653888425, 2460417.5656125387], [2460417.5662836274, 2460417.5665073236], [2460417.567066564, 2460417.5671784123], [2460417.568296893, 2460417.568408741], [2460417.5718760327, 2460417.571987881], [2460417.572994514, 2460417.5734419064], [2460417.5737774502, 2460417.574672235], [2460417.5747840833, 2460417.5748959314], [2460417.5750077795, 2460417.585074109]] freq_flags: [[47103881.8359375, 47225952.1484375], [49911499.0234375, 50277709.9609375], [51254272.4609375, 51742553.7109375], [62240600.5859375, 62973022.4609375], [69931030.2734375, 70053100.5859375], [74203491.2109375, 75057983.3984375], [77621459.9609375, 77743530.2734375], [77865600.5859375, 78109741.2109375], [87387084.9609375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [113265991.2109375, 113388061.5234375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136947631.8359375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153427124.0234375, 153549194.3359375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155868530.2734375, 156112670.8984375], [159164428.7109375, 159286499.0234375], [160263061.5234375, 160385131.8359375], [169784545.8984375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171981811.5234375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [186386108.3984375, 186508178.7109375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [195663452.1484375, 195785522.4609375], [196395874.0234375, 196517944.3359375], [196884155.2734375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206893920.8984375, 207015991.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [222640991.2109375, 222763061.5234375], [222885131.8359375, 223861694.3359375], [225692749.0234375, 225814819.3359375], [227401733.3984375, 227767944.3359375], [229110717.7734375, 229476928.7109375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [18, Jee], [18, Jnn], [21, Jee], [21, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [32, Jnn], [33, Jee], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [53, Jnn], [54, Jee], [54, Jnn], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jnn], [68, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [97, Jnn], [98, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [112, Jee], [115, Jee], [115, Jnn], [119, Jnn], [125, Jnn], [126, Jee], [130, Jnn], [134, Jnn], [136, Jnn], [142, Jnn], [147, Jee], [147, Jnn], [148, Jee], [148, Jnn], [149, Jee], [149, Jnn], [155, Jee], [161, Jnn], [163, Jee], [163, Jnn], [170, Jee], [171, Jnn], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [180, Jnn], [182, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [204, Jee], [204, Jnn], [208, Jee], [212, Jnn], [217, Jee], [217, Jnn], [218, Jee], [218, Jnn], [229, Jee], [231, Jnn], [232, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [246, Jnn], [251, Jee], [255, Jee], [255, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev6+gf0cfd8d hera_qm: 2.1.3.dev5+g3e71720 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 31.06 minutes.