Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1572 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460442/zen.2460442.16878.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1572 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460442/zen.2460442.16878.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
25.103% of waterfall flagged to start. 27.438% of waterfall flagged after flagging z > 5.0 outliers.
27.774% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 8 channels. Flagging 59 channels previously flagged 25.00% or more. Flagging 314 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 2 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 37.413% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1572 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460442/zen.2460442.16878.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460442/2460442_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460442.1702310946, 2460442.170566639], [2460442.1827580826, 2460442.182981779], [2460442.186560918, 2460442.1867846143], [2460442.1895808172, 2460442.1899163616], [2460442.1905874503, 2460442.1906992984], [2460442.1908111465, 2460442.191258539], [2460442.191370387, 2460442.191482235], [2460442.1941665895, 2460442.1943902858], [2460442.1951732226, 2460442.1952850707], [2460442.195620615, 2460442.195732463], [2460442.1968509443, 2460442.1970746405], [2460442.198752362, 2460442.19886421], [2460442.1994234505, 2460442.1996471467], [2460442.199982691, 2460442.2002063873], [2460442.2003182354, 2460442.2005419317], [2460442.2024433496, 2460442.2025551978], [2460442.203114438, 2460442.203449982], [2460442.2055750964, 2460442.205910641], [2460442.206246185, 2460442.206358033], [2460442.2077002106, 2460442.2078120587], [2460442.210384565, 2460442.210496413], [2460442.210608261, 2460442.2107201093], [2460442.211503046, 2460442.2119504386], [2460442.212285983, 2460442.212397831], [2460442.212509679, 2460442.2126215273], [2460442.213180768, 2460442.213292616], [2460442.2138518565, 2460442.2139637046], [2460442.2144110966, 2460442.214634793], [2460442.2150821853, 2460442.215529578], [2460442.216536211, 2460442.2169836033], [2460442.2179902364, 2460442.2181020845], [2460442.2189968694, 2460442.2193324137], [2460442.219444262, 2460442.21955611], [2460442.2197798057, 2460442.219891654], [2460442.2212338313, 2460442.2213456794], [2460442.2222404643, 2460442.2224641605], [2460442.2235826417, 2460442.22369449], [2460442.2244774266, 2460442.224812971], [2460442.224924819, 2460442.2252603634], [2460442.225484059, 2460442.2259314517], [2460442.226266996, 2460442.226378844], [2460442.2266025404, 2460442.2267143885], [2460442.227049933, 2460442.227161781], [2460442.228951351, 2460442.229063199], [2460442.229175047, 2460442.2293987432], [2460442.2298461357, 2460442.2304053763], [2460442.2307409206, 2460442.2308527688], [2460442.2311883126, 2460442.2313001608], [2460442.2330897306, 2460442.2332015787], [2460442.233313427, 2460442.233425275], [2460442.233648971, 2460442.2338726674], [2460442.234208212, 2460442.23432006], [2460442.2356622373, 2460442.2357740854], [2460442.237004414, 2460442.2371162623], [2460442.2373399585, 2460442.2374518067], [2460442.238682136, 2460442.238793984], [2460442.2394650728, 2460442.239688769], [2460442.241813883, 2460442.2420375794], [2460442.2444982375, 2460442.244833782], [2460442.24494563, 2460442.245057478], [2460442.247070744, 2460442.2474062885], [2460442.2515446683, 2460442.2517683646], [2460442.2541171745, 2460442.2542290227], [2460442.2555712, 2460442.255683048], [2460442.2579200105, 2460442.2580318586], [2460442.258255555, 2460442.258479251], [2460442.2588147954, 2460442.2594858836], [2460442.262617631, 2460442.262729479], [2460442.262953175, 2460442.2630650233], [2460442.2710062386, 2460442.271229935], [2460442.2744735302, 2460442.2746972265], [2460442.2771578846, 2460442.2778289733], [2460442.2781645176, 2460442.2782763657], [2460442.2792829988, 2460442.279394847], [2460442.2798422393, 2460442.2800659356], [2460442.28275029, 2460442.282973986], [2460442.2835332267, 2460442.283645075], [2460442.2874479103, 2460442.2875597584], [2460442.2905796575, 2460442.290803354], [2460442.301428924, 2460442.301540772], [2460442.30165262, 2460442.3018763163], [2460442.3029947975, 2460442.3031066456], [2460442.3032184937, 2460442.303330342], [2460442.303665886, 2460442.3038895824], [2460442.3053436074, 2460442.3054554556], [2460442.3055673037, 2460442.305679152], [2460442.3064620886, 2460442.306685785], [2460442.3072450254, 2460442.3074687216], [2460442.309593836, 2460442.309705684], [2460442.312054494, 2460442.3123900383], [2460442.3142914562, 2460442.314850697], [2460442.3167521143, 2460442.3168639624], [2460442.317423203, 2460442.317535051], [2460442.3176468993, 2460442.3177587474], [2460442.319324621, 2460442.319436469], [2460442.3196601653, 2460442.3197720135], [2460442.3199957097, 2460442.320107558], [2460442.328943558, 2460442.3291672543], [2460442.330844976, 2460442.3311805204], [2460442.335207052, 2460442.3353189], [2460442.3374440144, 2460442.3376677106], [2460442.3380032545, 2460442.3381151026], [2460442.339345432, 2460442.33945728], [2460442.340463913, 2460442.3406876093], [2460442.3593662432, 2460442.3595899395], [2460442.36070842, 2460442.3608202683], [2460442.3610439645, 2460442.3611558126], [2460442.365406041, 2460442.3656297373], [2460442.368649636, 2460442.3699918133], [2460442.3701036614, 2460442.37077475], [2460442.3708865982, 2460442.3709984464], [2460442.3711102945, 2460442.3712221426], [2460442.371445839, 2460442.371557687], [2460442.3716695346, 2460442.3717813827], [2460442.372005079, 2460442.372116927], [2460442.373235408, 2460442.3735709526], [2460442.373794649, 2460442.373906497], [2460442.3744657375, 2460442.3746894337], [2460442.37491313, 2460442.375024978], [2460442.3756960668, 2460442.376031611], [2460442.3762553073, 2460442.3763671555], [2460442.378156725, 2460442.378380421], [2460442.3787159654, 2460442.3788278135], [2460442.379163358, 2460442.3794989022], [2460442.3798344466, 2460442.3799462947], [2460442.3817358646, 2460442.382071409], [2460442.3857623963, 2460442.3858742444], [2460442.3878875105, 2460442.388558599], [2460442.388894143, 2460442.3891178393], [2460442.393591764, 2460442.393703612], [2460442.394151004, 2460442.394262852], [2460442.395828726, 2460442.39616427], [2460442.397059055, 2460442.397170903], [2460442.400526346, 2460442.4006381943], [2460442.412046701, 2460442.4121585493], [2460442.4177509546, 2460442.4178628027], [2460442.431508272, 2460442.43162012], [2460442.4319556644, 2460442.4320675125], [2460442.4444826525, 2460442.444818197], [2460442.474681641, 2460442.474793489], [2460442.478931869, 2460442.479043717], [2460442.4793792614, 2460442.484300578], [2460442.4845242742, 2460442.4846361224], [2460442.485195363, 2460442.485307211], [2460442.4858664516, 2460442.4859782998], [2460442.4865375403, 2460442.4866493884], [2460442.487208629, 2460442.4874323253], [2460442.4875441734, 2460442.4876560215], [2460442.487991566, 2460442.488103414], [2460442.489333743, 2460442.4895574395], [2460442.4897811357, 2460442.490564072], [2460442.49067592, 2460442.5010777945], [2460442.501189642, 2460442.501860731], [2460442.501972579, 2460442.50722944], [2460442.507341288, 2460442.507453136], [2460442.5075649843, 2460442.5077886805], [2460442.5079005286, 2460442.5104730353], [2460442.5106967315, 2460442.520539365]] freq_flags: [[46981811.5234375, 47470092.7734375], [47714233.3984375, 48202514.6484375], [48324584.9609375, 48446655.2734375], [48568725.5859375, 50521850.5859375], [50765991.2109375, 51864624.0234375], [53695678.7109375, 53817749.0234375], [54428100.5859375, 54550170.8984375], [56259155.2734375, 56381225.5859375], [56503295.8984375, 56991577.1484375], [62362670.8984375, 62850952.1484375], [69931030.2734375, 70053100.5859375], [77865600.5859375, 78109741.2109375], [85556030.2734375, 86044311.5234375], [87265014.6484375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [121566772.4609375, 121932983.3984375], [124740600.5859375, 125228881.8359375], [126205444.3359375, 126327514.6484375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142929077.1484375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [158554077.1484375, 158676147.4609375], [159164428.7109375, 159286499.0234375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175033569.3359375, 175521850.5859375], [179672241.2109375, 179794311.5234375], [181137084.9609375, 181381225.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191513061.5234375], [195663452.1484375, 195785522.4609375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [222518920.8984375, 223983764.6484375], [224227905.2734375, 224349975.5859375], [227401733.3984375, 227890014.6484375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [7, Jee], [7, Jnn], [8, Jnn], [9, Jee], [9, Jnn], [10, Jnn], [18, Jee], [18, Jnn], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [54, Jee], [57, Jee], [57, Jnn], [61, Jee], [61, Jnn], [62, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [80, Jnn], [81, Jee], [81, Jnn], [83, Jee], [83, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [97, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [112, Jee], [115, Jee], [115, Jnn], [116, Jnn], [117, Jnn], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [125, Jee], [125, Jnn], [127, Jee], [130, Jee], [130, Jnn], [131, Jnn], [132, Jee], [134, Jnn], [135, Jee], [136, Jnn], [138, Jee], [141, Jee], [154, Jnn], [155, Jee], [155, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [172, Jnn], [173, Jnn], [174, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [180, Jee], [180, Jnn], [183, Jee], [183, Jnn], [184, Jee], [188, Jnn], [194, Jee], [194, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jee], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [204, Jnn], [206, Jee], [208, Jee], [209, Jnn], [212, Jnn], [217, Jee], [217, Jnn], [218, Jnn], [229, Jee], [231, Jnn], [232, Jee], [232, Jnn], [235, Jee], [235, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [251, Jnn], [252, Jnn], [253, Jnn], [255, Jee], [255, Jnn], [256, Jnn], [262, Jnn], [266, Jee], [267, Jnn], [268, Jnn], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [295, Jee], [295, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev65+ge56a686 hera_qm: 2.1.4 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 30.52 minutes.