Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1573 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460460/zen.2460460.16871.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1573 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460460/zen.2460460.16871.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
22.913% of waterfall flagged to start. 25.418% of waterfall flagged after flagging z > 5.0 outliers.
25.724% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 14 channels. Flagging 14 channels previously flagged 25.00% or more. Flagging 143 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 29.954% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1573 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460460/zen.2460460.16871.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460460/2460460_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460460.1732933926, 2460460.173517089], [2460460.1768725323, 2460460.1769843805], [2460460.180675368, 2460460.181010912], [2460460.1830241783, 2460460.1832478745], [2460460.185372988, 2460460.1855966845], [2460460.1916364823, 2460460.1919720266], [2460460.1920838747, 2460460.192195723], [2460460.194432685, 2460460.1945445333], [2460460.1980118244, 2460460.1981236725], [2460460.1991303056, 2460460.1992421537], [2460460.200584331, 2460460.2008080273], [2460460.202821293, 2460460.203044989], [2460460.2036042297, 2460460.203716078], [2460460.204051622, 2460460.2042753184], [2460460.2043871665, 2460460.2044990147], [2460460.2061767364, 2460460.2065122807], [2460460.2069596727, 2460460.207183369], [2460460.2085255464, 2460460.2088610907], [2460460.2097558756, 2460460.209979572], [2460460.2129994705, 2460460.2131113186], [2460460.215236433, 2460460.215571977], [2460460.2157956734, 2460460.2160193697], [2460460.216243066, 2460460.216466762], [2460460.2166904584, 2460460.2169141546], [2460460.2176970914, 2460460.218256332], [2460460.2183681796, 2460460.218703724], [2460460.2201577495, 2460460.2202695976], [2460460.2203814457, 2460460.220605142], [2460460.2274278766, 2460460.227875269], [2460460.2285463577, 2460460.228658206], [2460460.232125497, 2460460.232349193], [2460460.2334676743, 2460460.2335795225], [2460460.2352572437, 2460460.235592788], [2460460.235704636, 2460460.2358164843], [2460460.239171928, 2460460.239283776], [2460460.242639219, 2460460.242862915], [2460460.2431984595, 2460460.2433103076], [2460460.2434221557, 2460460.243645852], [2460460.2484553205, 2460460.2485671686], [2460460.2486790167, 2460460.248790865], [2460460.2591927387, 2460460.259416435], [2460460.259640131, 2460460.2598638274], [2460460.26031122, 2460460.260423068], [2460460.260534916, 2460460.260646764], [2460460.2643377515, 2460460.264561448], [2460460.2695946125, 2460460.2698183088], [2460460.275410714, 2460460.2756344103], [2460460.278989854, 2460460.279101702], [2460460.285365196, 2460460.285477044], [2460460.286819221, 2460460.286931069], [2460460.2872666134, 2460460.2874903097], [2460460.287714006, 2460460.287825854], [2460460.30460307, 2460460.304714918], [2460460.3061689436, 2460460.3062807918], [2460460.3082940574, 2460460.3085177536], [2460460.311873197, 2460460.311985045], [2460460.320485501, 2460460.32115659], [2460460.324176489, 2460460.324288337], [2460460.3279793244, 2460460.3280911725], [2460460.3388285907, 2460460.3393878313], [2460460.34240773, 2460460.3427432743], [2460460.343414363, 2460460.343526211], [2460460.3482238315, 2460460.3483356796], [2460460.3513555788, 2460460.351467427], [2460460.3537043887, 2460460.353816237], [2460460.3573953765, 2460460.3575072247], [2460460.3762977063, 2460460.3764095544], [2460460.378870213, 2460460.378982061], [2460460.387370669, 2460460.387482517], [2460460.3987791757, 2460460.399002872], [2460460.3997858088, 2460460.400009505], [2460460.400121353, 2460460.4005687456], [2460460.400792442, 2460460.4012398343], [2460460.4013516824, 2460460.4015753786], [2460460.401910923, 2460460.402805708], [2460460.402917556, 2460460.403812341], [2460460.411641708, 2460460.4118654043], [2460460.4173459616, 2460460.417569658], [2460460.4224909744, 2460460.4226028225], [2460460.4227146707, 2460460.422826519], [2460460.4232739112, 2460460.4233857593], [2460460.4234976075, 2460460.4253990254], [2460460.425958266, 2460460.427524139], [2460460.431103279, 2460460.431215127], [2460460.4330046964, 2460460.4331165445], [2460460.445084292, 2460460.445307988], [2460460.4516833303, 2460460.4517951785], [2460460.4519070266, 2460460.454367685], [2460460.4550387734, 2460460.4561572545], [2460460.456716495, 2460460.4571638876], [2460460.457387584, 2460460.45761128], [2460460.459736394, 2460460.4598482423], [2460460.4643221665, 2460460.4645458627], [2460460.4705856605, 2460460.4712567492], [2460460.471592293, 2460460.4717041412], [2460460.4718159894, 2460460.4719278375], [2460460.472263382, 2460460.47237523], [2460460.472598926, 2460460.4727107743], [2460460.4729344705, 2460460.4730463186], [2460460.473381863, 2460460.473493711], [2460460.473605559, 2460460.4738292554], [2460460.4740529517, 2460460.474276648], [2460460.4748358885, 2460460.4749477366], [2460460.475171433, 2460460.475283281], [2460460.475395129, 2460460.475506977], [2460460.4757306734, 2460460.4758425215], [2460460.47886242, 2460460.4790861164], [2460460.480428294, 2460460.48065199], [2460460.481658623, 2460460.481770471], [2460460.4818823193, 2460460.4819941674], [2460460.4822178637, 2460460.482329712], [2460460.482553408, 2460460.4830008], [2460460.4832244962, 2460460.4833363444], [2460460.4835600406, 2460460.4843429774], [2460460.4845666736, 2460460.48479037], [2460460.4853496104, 2460460.4855733067], [2460460.485908851, 2460460.4863562435], [2460460.486691788, 2460460.487027332], [2460460.4871391803, 2460460.487698421], [2460460.4881458133, 2460460.4882576615], [2460460.4889287497, 2460460.489040598], [2460460.4899353827, 2460460.490047231], [2460460.490159079, 2460460.4906064714], [2460460.490942016, 2460460.4913894082], [2460460.4916131045, 2460460.492172345], [2460460.492284193, 2460460.4925078894], [2460460.4934026743, 2460460.4935145224], [2460460.4940737626, 2460460.4957514843], [2460460.497429206, 2460460.4976529023], [2460460.4977647504, 2460460.4978765985], [2460460.4979884466, 2460460.498323991], [2460460.498547687, 2460460.4986595353], [2460460.5000017122, 2460460.500560953], [2460460.5012320415, 2460460.501567586], [2460460.5022386746, 2460460.5023505227], [2460460.502462371, 2460460.502574219], [2460460.5029097633, 2460460.5032453076], [2460460.503469004, 2460460.503804548], [2460460.5057059657, 2460460.5064889025], [2460460.507159991, 2460460.5073836874], [2460460.5081666242, 2460460.5082784723], [2460460.508837713, 2460460.509061409], [2460460.5091732573, 2460460.509844346], [2460460.5105154347, 2460460.510627283], [2460460.510739131, 2460460.511074675], [2460460.5115220672, 2460460.5119694597], [2460460.512305004, 2460460.5126405484], [2460460.5129760928, 2460460.513087941], [2460460.5135353333, 2460460.5137590296], [2460460.5138708777, 2460460.514206422], [2460460.51431827, 2460460.5144301183], [2460460.5146538145, 2460460.515101207], [2460460.51610784, 2460460.516331536], [2460460.516555232, 2460460.5170026245], [2460460.5177855613, 2460460.5181211056], [2460460.5182329537, 2460460.518680346], [2460460.5190158905, 2460460.519463283], [2460460.5197988274, 2460460.5200225236]] freq_flags: [[46981811.5234375, 47348022.4609375], [49911499.0234375, 50033569.3359375], [62240600.5859375, 62850952.1484375], [69931030.2734375, 70053100.5859375], [70907592.7734375, 71273803.7109375], [71640014.6484375, 72006225.5859375], [77621459.9609375, 77743530.2734375], [77865600.5859375, 77987670.8984375], [87387084.9609375, 108261108.3984375], [109725952.1484375, 109848022.4609375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [121810913.0859375, 122055053.7109375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136825561.5234375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170028686.5234375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [199935913.0859375, 200057983.3984375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [7, Jee], [9, Jnn], [10, Jnn], [18, Jee], [18, Jnn], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jee], [33, Jnn], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [38, Jee], [38, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jee], [66, Jnn], [69, Jee], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [80, Jnn], [81, Jee], [81, Jnn], [82, Jnn], [83, Jee], [83, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [96, Jnn], [97, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [115, Jee], [115, Jnn], [116, Jnn], [117, Jnn], [130, Jee], [130, Jnn], [131, Jee], [131, Jnn], [133, Jee], [133, Jnn], [135, Jee], [136, Jnn], [154, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [173, Jnn], [174, Jnn], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [183, Jee], [183, Jnn], [186, Jnn], [188, Jnn], [192, Jee], [195, Jnn], [196, Jee], [196, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [204, Jnn], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [215, Jnn], [217, Jee], [218, Jnn], [229, Jee], [231, Jnn], [232, Jee], [234, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [246, Jnn], [250, Jee], [251, Jee], [252, Jnn], [253, Jnn], [255, Jee], [255, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [267, Jnn], [268, Jnn], [272, Jee], [272, Jnn], [281, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev110+gcc0a13d hera_qm: 2.1.5.dev6+g23b7cf7 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 26.12 minutes.