Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1569 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460464/zen.2460464.16872.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1569 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460464/zen.2460464.16872.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
30.255% of waterfall flagged to start. 33.242% of waterfall flagged after flagging z > 5.0 outliers.
33.676% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 41 channels. Flagging 14 channels previously flagged 25.00% or more. Flagging 232 times previously flagged 10.00% or more.
Flagging an additional 2 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 40.481% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1569 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460464/zen.2460464.16872.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460464/2460464_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460464.1686077756, 2460464.2075309167], [2460464.207642765, 2460464.207978309], [2460464.2085375497, 2460464.2089849417], [2460464.209208638, 2460464.209320486], [2460464.209432334, 2460464.2096560304], [2460464.2098797266, 2460464.210103423], [2460464.210327119, 2460464.210438967], [2460464.2108863597, 2460464.211110056], [2460464.211221904, 2460464.2114456003], [2460464.2115574484, 2460464.2116692965], [2460464.2118929927, 2460464.212116689], [2460464.212340385, 2460464.2125640814], [2460464.2127877777, 2460464.2128996258], [2460464.213011474, 2460464.213123322], [2460464.2135707145, 2460464.2136825626], [2460464.214018107, 2460464.2142418027], [2460464.214465499, 2460464.214577347], [2460464.2148010433, 2460464.2149128914], [2460464.2150247395, 2460464.2152484357], [2460464.21558398, 2460464.215695828], [2460464.2159195244, 2460464.2160313725], [2460464.2161432207, 2460464.216255069], [2460464.216366917, 2460464.216478765], [2460464.216590613, 2460464.2168143094], [2460464.2169261575, 2460464.2170380056], [2460464.217261702, 2460464.21737355], [2460464.2177090943, 2460464.2178209424], [2460464.2181564867, 2460464.218380183], [2460464.2190512717, 2460464.21916312], [2460464.219274968, 2460464.219386816], [2460464.219834208, 2460464.219946056], [2460464.2202816005, 2460464.2203934486], [2460464.2205052967, 2460464.220617145], [2460464.2211763854, 2460464.2212882335], [2460464.2215119298, 2460464.221623778], [2460464.221959322, 2460464.2220711703], [2460464.2222948666, 2460464.222630411], [2460464.222854107, 2460464.2229659553], [2460464.2233014996, 2460464.223525196], [2460464.223637044, 2460464.22386074], [2460464.2239725883, 2460464.2240844364], [2460464.2243081327, 2460464.224419981], [2460464.224531829, 2460464.224755525], [2460464.2249792214, 2460464.2250910695], [2460464.2252029176, 2460464.2253147657], [2460464.2255384615, 2460464.2256503096], [2460464.225985854, 2460464.226097702], [2460464.22620955, 2460464.2263213983], [2460464.2266569426, 2460464.2267687907], [2460464.226880639, 2460464.227104335], [2460464.227216183, 2460464.2273280313], [2460464.2276635757, 2460464.227887272], [2460464.2283346644, 2460464.2284465125], [2460464.229117601, 2460464.2292294493], [2460464.2296768418, 2460464.22978869], [2460464.2305716267, 2460464.230683475], [2460464.231130867, 2460464.231242715], [2460464.2315782593, 2460464.2316901074], [2460464.2321375, 2460464.232249348], [2460464.2326967404, 2460464.2328085885], [2460464.233144133, 2460464.233255981], [2460464.2334796772, 2460464.2335915253], [2460464.234262614, 2460464.234374462], [2460464.2347100065, 2460464.2348218546], [2460464.2349337027, 2460464.235045551], [2460464.235269247, 2460464.235381095], [2460464.2354929433, 2460464.2356047914], [2460464.2358284877, 2460464.235940336], [2460464.236052184, 2460464.23627588], [2460464.2369469684, 2460464.2370588165], [2460464.237394361, 2460464.237506209], [2460464.237729905, 2460464.2378417533], [2460464.2381772976, 2460464.2382891458], [2460464.238400994, 2460464.238736538], [2460464.2391839307, 2460464.239407627], [2460464.239631323, 2460464.2398550194], [2460464.240526108, 2460464.240637956], [2460464.241420893, 2460464.241532741], [2460464.2417564373, 2460464.2418682855], [2460464.242315678, 2460464.242427526], [2460464.242651222, 2460464.242986766], [2460464.2432104624, 2460464.2433223105], [2460464.243657855, 2460464.243769703], [2460464.2450000322, 2460464.2451118804], [2460464.2452237285, 2460464.2454474247], [2460464.245671121, 2460464.245782969], [2460464.2464540577, 2460464.246565906], [2460464.2470132983, 2460464.2472369946], [2460464.247460691, 2460464.2479080833], [2460464.2484673234, 2460464.2485791715], [2460464.249026564, 2460464.249138412], [2460464.249921349, 2460464.250033197], [2460464.2504805895, 2460464.2505924376], [2460464.2507042857, 2460464.250816134], [2460464.2512635263, 2460464.2513753744], [2460464.2515990706, 2460464.2517109187], [2460464.252941248, 2460464.253053096], [2460464.2531649442, 2460464.2535004886], [2460464.2536123362, 2460464.2537241844], [2460464.2540597287, 2460464.254171577], [2460464.2548426655, 2460464.2549545136], [2460464.25517821, 2460464.255401906], [2460464.2558492986, 2460464.256072995], [2460464.2565203873, 2460464.2566322354], [2460464.258198109, 2460464.258309957], [2460464.259652134, 2460464.259763982], [2460464.2598758303, 2460464.2599876784], [2460464.2602113746, 2460464.2603232227], [2460464.2611061595, 2460464.2612180077], [2460464.2622246407, 2460464.262336489], [2460464.2628957294, 2460464.2630075775], [2460464.263566818, 2460464.263678666], [2460464.2639023624, 2460464.2640142106], [2460464.2641260587, 2460464.264237907], [2460464.264573451, 2460464.2646852992], [2460464.2664748686, 2460464.2665867168], [2460464.267705198, 2460464.267817046], [2460464.2713961853, 2460464.2715080334], [2460464.272179122, 2460464.27229097], [2460464.272962059, 2460464.273073907], [2460464.274192388, 2460464.2743042363], [2460464.2745279325, 2460464.2747516287], [2460464.275199021, 2460464.2753108693], [2460464.276317502, 2460464.27642935], [2460464.2798966416, 2460464.2800084897], [2460464.2806795784, 2460464.2807914265], [2460464.2842587177, 2460464.284370566], [2460464.284594262, 2460464.28470611], [2460464.2870549206, 2460464.2871667687], [2460464.2875023126, 2460464.2876141607], [2460464.2892918824, 2460464.2894037305], [2460464.289851123, 2460464.289962971], [2460464.2913051485, 2460464.2914169966], [2460464.291864389, 2460464.291976237], [2460464.2921999334, 2460464.2923117816], [2460464.292535478, 2460464.292647326], [2460464.292871022, 2460464.293094718], [2460464.2947724396, 2460464.2948842878], [2460464.2966738576, 2460464.2967857057], [2460464.2974567944, 2460464.2975686425], [2460464.2989108195, 2460464.2991345157], [2460464.2996937563, 2460464.2998056044], [2460464.2999174525, 2460464.3000293006], [2460464.3038321366, 2460464.3039439847], [2460464.3059572503, 2460464.306516491], [2460464.307634972, 2460464.3078586683], [2460464.309424542, 2460464.309983782], [2460464.31367477, 2460464.313786618], [2460464.314793251, 2460464.314905099], [2460464.3217278332, 2460464.3218396814], [2460464.331682315, 2460464.331794163], [2460464.3389524417, 2460464.33906429], [2460464.339176138, 2460464.339399834], [2460464.400021508, 2460464.4005807485], [2460464.409304901, 2460464.409416749], [2460464.4107589265, 2460464.4108707746], [2460464.4128840403, 2460464.413443281], [2460464.413555129, 2460464.413778825], [2460464.4159039394, 2460464.4160157875], [2460464.417134268, 2460464.4172461163], [2460464.4193712305, 2460464.4194830786], [2460464.420937104, 2460464.4210489523], [2460464.421943737, 2460464.4220555853], [2460464.4226148254, 2460464.4227266735], [2460464.4236214585, 2460464.4238451547], [2460464.4246280915, 2460464.4247399396], [2460464.4248517877, 2460464.4263058132], [2460464.426976902, 2460464.4273124463], [2460464.4274242944, 2460464.4275361425], [2460464.427983535, 2460464.428095383], [2460464.4288783194, 2460464.4289901676], [2460464.42943756, 2460464.429549408], [2460464.4299968006, 2460464.4301086487], [2460464.430220497, 2460464.430332345], [2460464.431562674, 2460464.4316745223], [2460464.432233763, 2460464.432345611], [2460464.4329048516, 2460464.4330166997], [2460464.4335759403, 2460464.4336877884], [2460464.4343588767, 2460464.434470725], [2460464.4352536616, 2460464.4353655097], [2460464.436483991, 2460464.436595839], [2460464.437378776, 2460464.437490624], [2460464.4382735607, 2460464.438385409], [2460464.4389446494, 2460464.4390564975], [2460464.439839434, 2460464.439951282], [2460464.4403986745, 2460464.4405105226], [2460464.4423000924, 2460464.4424119405], [2460464.442747485, 2460464.442859333], [2460464.4434185736, 2460464.4435304217], [2460464.4442015104, 2460464.4443133585], [2460464.444872599, 2460464.444984447], [2460464.4457673836, 2460464.4458792317], [2460464.4468858647, 2460464.446997713], [2460464.4478924978, 2460464.448004346], [2460464.4484517383, 2460464.4485635865], [2460464.462209055, 2460464.4623209033], [2460464.4625445995, 2460464.4626564477], [2460464.463886777, 2460464.463998625], [2460464.4642223213, 2460464.4645578656], [2460464.465676347, 2460464.465900043], [2460464.4663474355, 2460464.4664592836], [2460464.4672422204, 2460464.4673540685], [2460464.467465916, 2460464.4675777643], [2460464.4678014605, 2460464.4679133086], [2460464.468248853, 2460464.468360701], [2460464.4688080936, 2460464.4689199417], [2460464.46903179, 2460464.469255486], [2460464.469367334, 2460464.4694791823], [2460464.4697028785, 2460464.4698147266], [2460464.470150271, 2460464.470373967], [2460464.4705976634, 2460464.474400499], [2460464.4747360433, 2460464.482789107], [2460464.4830128034, 2460464.4882696643], [2460464.4886052087, 2460464.4896118417], [2460464.48972369, 2460464.489947386], [2460464.490171082, 2460464.490394778], [2460464.4909540187, 2460464.491065867], [2460464.4925198923, 2460464.4927435885], [2460464.493414677, 2460464.4935265253], [2460464.495539791, 2460464.495763487], [2460464.496434576, 2460464.496546424], [2460464.500237412, 2460464.500461108], [2460464.5009085005, 2460464.5011321967], [2460464.5013558925, 2460464.5015795887], [2460464.502586222, 2460464.50269807], [2460464.5030336143, 2460464.5031454624]] freq_flags: [[47103881.8359375, 47348022.4609375], [49911499.0234375, 50033569.3359375], [62362670.8984375, 62606811.5234375], [67367553.7109375, 67489624.0234375], [67855834.9609375, 67977905.2734375], [68099975.5859375, 68344116.2109375], [68588256.8359375, 68832397.4609375], [68954467.7734375, 69442749.0234375], [69931030.2734375, 70053100.5859375], [70663452.1484375, 72738647.4609375], [72860717.7734375, 73837280.2734375], [74203491.2109375, 74569702.1484375], [75424194.3359375, 75546264.6484375], [77987670.8984375, 78109741.2109375], [87387084.9609375, 108139038.0859375], [112655639.6484375, 112777709.9609375], [113632202.1484375, 113754272.4609375], [124862670.8984375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191268920.8984375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198226928.7109375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jnn], [9, Jnn], [10, Jee], [10, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jee], [82, Jnn], [83, Jee], [83, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [96, Jnn], [97, Jnn], [98, Jee], [98, Jnn], [99, Jee], [99, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [116, Jnn], [117, Jee], [117, Jnn], [119, Jee], [119, Jnn], [120, Jee], [121, Jee], [125, Jee], [125, Jnn], [126, Jee], [130, Jee], [130, Jnn], [131, Jnn], [134, Jnn], [136, Jnn], [154, Jnn], [155, Jee], [159, Jnn], [161, Jnn], [166, Jnn], [170, Jee], [171, Jnn], [172, Jnn], [173, Jee], [173, Jnn], [174, Jnn], [175, Jee], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [180, Jnn], [183, Jee], [183, Jnn], [188, Jnn], [193, Jee], [196, Jee], [196, Jnn], [197, Jee], [197, Jnn], [199, Jee], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [204, Jee], [204, Jnn], [208, Jee], [212, Jee], [212, Jnn], [215, Jnn], [217, Jee], [218, Jnn], [229, Jee], [231, Jee], [231, Jnn], [232, Jee], [232, Jnn], [235, Jee], [235, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [250, Jee], [251, Jee], [252, Jnn], [253, Jee], [255, Jee], [255, Jnn], [262, Jnn], [266, Jee], [267, Jnn], [268, Jee], [268, Jnn], [272, Jee], [272, Jnn], [281, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev110+gcc0a13d hera_qm: 2.1.5.dev6+g23b7cf7 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 30.44 minutes.