Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1043 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460522/zen.2460522.28697.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1043 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460522/zen.2460522.28697.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
45.089% of waterfall flagged to start. 47.641% of waterfall flagged after flagging z > 5.0 outliers.
48.053% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags. Flagging an additional 0 integrations and 6 channels. Flagging 123 channels previously flagged 25.00% or more. Flagging 88 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 1 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 54.352% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1043 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460522/zen.2460522.28697.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460522/2460522_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460522.2868605345, 2460522.333836739], [2460522.3351789163, 2460522.3352907645], [2460522.336968486, 2460522.3378632707], [2460522.337975119, 2460522.3385343594], [2460522.3387580556, 2460522.340212081], [2460522.340323929, 2460522.34088317], [2460522.341106866, 2460522.3413305623], [2460522.3415542585, 2460522.3416661066], [2460522.341889803, 2460522.3450215496], [2460522.3451333977, 2460522.3475940563], [2460522.3477059044, 2460522.3479296006], [2460522.3480414487, 2460522.348488841], [2460522.3488243856, 2460522.3489362337], [2460522.3493836257, 2460522.349495474], [2460522.3512850436, 2460522.3513968918], [2460522.352403525, 2460522.352627221], [2460522.3529627654, 2460522.3532983097], [2460522.3541930947, 2460522.354304943], [2460522.355982664, 2460522.356094512], [2460522.3573248414, 2460522.3575485377], [2460522.3606802844, 2460522.3607921326], [2460522.361239525, 2460522.361351373], [2460522.3616869175, 2460522.362022462], [2460522.3628053986, 2460522.3629172468], [2460522.363252791, 2460522.363364639], [2460522.364147576, 2460522.364259424], [2460522.3647068166, 2460522.3648186647], [2460522.3656016015, 2460522.3658252973], [2460522.3700755257, 2460522.370187374], [2460522.370299222, 2460522.370522918], [2460522.3708584625, 2460522.3709703106], [2460522.3723124876, 2460522.3724243357], [2460522.373542817, 2460522.373654665], [2460522.3743257537, 2460522.374437602], [2460522.3748849942, 2460522.3749968424], [2460522.3758916273, 2460522.3760034754], [2460522.3773456523, 2460522.3775693486], [2460522.378016741, 2460522.3782404372], [2460522.379918159, 2460522.380030007], [2460522.3803655514, 2460522.3805892477], [2460522.380701096, 2460522.380812944], [2460522.380924792, 2460522.38103664], [2460522.3813721845, 2460522.3815958807], [2460522.3829380576, 2460522.3830499058], [2460522.3837209945, 2460522.3838328426], [2460522.3866290455, 2460522.3868527417], [2460522.3876356785, 2460522.3877475266], [2460522.388642311, 2460522.388754159], [2460522.389425248, 2460522.389537096], [2460522.390320033, 2460522.390543729], [2460522.391550362, 2460522.3917740583], [2460522.3919977546, 2460522.3921096027], [2460522.3927806914, 2460522.3928925395], [2460522.393228084, 2460522.393339932], [2460522.3938991725, 2460522.3941228683], [2460522.394682109, 2460522.394793957], [2460522.3950176532, 2460522.3951295014], [2460522.395688742, 2460522.395912438], [2460522.3971427674, 2460522.3972546156], [2460522.397702008, 2460522.397813856], [2460522.3991560335, 2460522.3992678816], [2460522.400162666, 2460522.400274514], [2460522.400833755, 2460522.401057451], [2460522.402064084, 2460522.402175932], [2460522.402735173, 2460522.402958869], [2460522.403853654, 2460522.403965502], [2460522.4046365907, 2460522.404860287], [2460522.406314312, 2460522.4065380082], [2460522.4067617045, 2460522.407097249], [2460522.408439426, 2460522.4085512743], [2460522.4088868187, 2460522.409110515], [2460522.4112356286, 2460522.411459325], [2460522.4131370466, 2460522.413360743], [2460522.414367376, 2460522.414479224], [2460522.4150384646, 2460522.4151503127], [2460522.415374009, 2460522.415485857], [2460522.4158214014, 2460522.4159332495], [2460522.4164924896, 2460522.4166043377], [2460522.417610971, 2460522.417722819], [2460522.4183939076, 2460522.418617604], [2460522.4190649963, 2460522.4192886925], [2460522.42063087, 2460522.420742718], [2460522.4225322874, 2460522.4226441355], [2460522.425216642, 2460522.4253284903], [2460522.4256640347, 2460522.425775883], [2460522.4264469715, 2460522.4265588196], [2460522.4280128446, 2460522.4281246928], [2460522.429131326, 2460522.429243174], [2460522.42946687, 2460522.4296905664], [2460522.4306971994, 2460522.4309208957], [2460522.432263073, 2460522.432374921], [2460522.434500035, 2460522.434723731], [2460522.4349474274, 2460522.4350592755], [2460522.4362896048, 2460522.436401453], [2460522.4371843897, 2460522.437408086], [2460522.437631782, 2460522.4377436303], [2460522.4395331996, 2460522.4396450478], [2460522.4405398327, 2460522.440651681], [2460522.442664947, 2460522.442776795], [2460522.443895276, 2460522.4441189724], [2460522.445237453, 2460522.445349301], [2460522.4454611493, 2460522.4456848456], [2460522.448145504, 2460522.448257352], [2460522.4497113777, 2460522.449823226], [2460522.4517246434, 2460522.4518364915], [2460522.453514213, 2460522.4537379094], [2460522.454185302, 2460522.454408998], [2460522.4548563906, 2460522.4549682387], [2460522.455303783, 2460522.455415631], [2460522.4561985675, 2460522.4563104156], [2460522.456757808, 2460522.456869656], [2460522.4570933525, 2460522.4572052006], [2460522.4573170487, 2460522.457428897], [2460522.459554011, 2460522.4597777072], [2460522.4602250997, 2460522.460336948], [2460522.4610080365, 2460522.4611198846], [2460522.4616791247, 2460522.461790973], [2460522.4633568465, 2460522.4635805427], [2460522.4642516314, 2460522.4644753276], [2460522.46492272, 2460522.465034568], [2460522.4654819607, 2460522.465593809], [2460522.4662648975, 2460522.4663767456], [2460522.4674952263, 2460522.4677189225], [2460522.468054467, 2460522.468390011], [2460522.4686137075, 2460522.4688374037], [2460522.469284796, 2460522.4695084924], [2460522.470291429, 2460522.4704032773], [2460522.4715217585, 2460522.4717454547], [2460522.4723046953, 2460522.4725283915], [2460522.4726402396, 2460522.4728639354], [2460522.4731994797, 2460522.473311328], [2460522.4738705684, 2460522.4740942647], [2460522.4749890496, 2460522.475212746], [2460522.475324594, 2460522.47554829], [2460522.4757719864, 2460522.4759956826], [2460522.476219379, 2460522.476331227], [2460522.4767786195, 2460522.4770023157], [2460522.478232645, 2460522.478791885], [2460522.4790155813, 2460522.4791274294], [2460522.479462974, 2460522.479574822], [2460522.47968667, 2460522.479798518], [2460522.4800222144, 2460522.4801340625], [2460522.4812525436, 2460522.4813643917], [2460522.481811784, 2460522.4821473286], [2460522.482482873, 2460522.482594721], [2460522.483489506, 2460522.483601354], [2460522.4838250503, 2460522.4840487465], [2460522.484160594, 2460522.4843842904], [2460522.484943531, 2460522.4855027716], [2460522.4856146197, 2460522.485838316], [2460522.4861738603, 2460522.4863975565], [2460522.4872923414, 2460522.4874041895], [2460522.487627886, 2460522.487739734], [2460522.48796343, 2460522.4880752782], [2460522.4881871263, 2460522.4882989745], [2460522.488746367, 2460522.488970063], [2460522.4891937594, 2460522.4893056075], [2460522.4895293037, 2460522.489641152], [2460522.4898648476, 2460522.490200392], [2460522.491207025, 2460522.491318873], [2460522.4916544175, 2460522.4917662656], [2460522.4918781137, 2460522.491989962], [2460522.4924373543, 2460522.4926610505], [2460522.493108443, 2460522.4934439873], [2460522.49389138, 2460522.494115076], [2460522.4952335567, 2460522.495345405], [2460522.4961283416, 2460522.4962401898], [2460522.496463886, 2460522.496575734], [2460522.4969112785, 2460522.497246823], [2460522.497470519, 2460522.497582367], [2460522.498365304, 2460522.498589], [2460522.4989245445, 2460522.4990363927], [2460522.499260089, 2460522.499483785], [2460522.500825962, 2460522.5010496583], [2460522.5014970507, 2460522.501608899], [2460522.501832595, 2460522.5022799876], [2460522.50272738, 2460522.5030629244], [2460522.5032866206, 2460522.503510317], [2460522.5042932536, 2460522.5044051018], [2460522.504628798, 2460522.504852494], [2460522.505747279, 2460522.5059709754], [2460522.506418368, 2460522.50686576], [2460522.506977608, 2460522.507201304], [2460522.5076486967, 2460522.507760545], [2460522.5086553297, 2460522.508767178], [2460522.5093264184, 2460522.5095501146], [2460522.509773811, 2460522.509885659], [2460522.510892292, 2460522.5111159883], [2460522.512234469, 2460522.512346317], [2460522.5129055576, 2460522.513241102], [2460522.5135766463, 2460522.5136884945], [2460522.5139121907, 2460522.514024039], [2460522.5144714313, 2460522.5145832794], [2460522.5148069756, 2460522.5149188237], [2460522.515254368, 2460522.515366216], [2460522.5157017605, 2460522.515925457], [2460522.5173794823, 2460522.5174913304], [2460522.5177150266, 2460522.5179387224], [2460522.5190572035, 2460522.5192809], [2460522.520287533, 2460522.520399381]] freq_flags: [[46859741.2109375, 47592163.0859375], [47714233.3984375, 60775756.8359375], [61019897.4609375, 61508178.7109375], [62118530.2734375, 63217163.0859375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108261108.3984375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [124862670.8984375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [137069702.1484375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145736694.3359375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155868530.2734375, 156112670.8984375], [158676147.4609375, 158798217.7734375], [159164428.7109375, 159286499.0234375], [170028686.5234375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [196395874.0234375, 196517944.3359375], [196884155.2734375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [206893920.8984375, 207015991.2109375], [207260131.8359375, 207382202.1484375], [208480834.9609375, 208724975.5859375], [210433959.9609375, 210556030.2734375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223373413.0859375], [225692749.0234375, 225814819.3359375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229476928.7109375], [231063842.7734375, 231185913.0859375]] ex_ants: [[5, Jee], [8, Jnn], [9, Jee], [9, Jnn], [10, Jee], [15, Jnn], [18, Jee], [18, Jnn], [20, Jee], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jee], [67, Jee], [67, Jnn], [68, Jnn], [69, Jee], [69, Jnn], [70, Jnn], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jee], [82, Jnn], [83, Jnn], [84, Jee], [84, Jnn], [85, Jee], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [91, Jee], [91, Jnn], [92, Jee], [97, Jnn], [98, Jee], [98, Jnn], [99, Jee], [100, Jnn], [101, Jee], [101, Jnn], [102, Jee], [102, Jnn], [103, Jee], [103, Jnn], [104, Jee], [104, Jnn], [105, Jee], [106, Jee], [106, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jee], [109, Jnn], [110, Jee], [110, Jnn], [111, Jee], [111, Jnn], [114, Jee], [114, Jnn], [115, Jee], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [118, Jee], [118, Jnn], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jee], [122, Jnn], [124, Jnn], [125, Jee], [125, Jnn], [126, Jee], [126, Jnn], [127, Jee], [129, Jee], [130, Jee], [131, Jee], [131, Jnn], [132, Jee], [132, Jnn], [133, Jee], [134, Jee], [135, Jee], [136, Jee], [136, Jnn], [137, Jee], [137, Jnn], [138, Jee], [138, Jnn], [139, Jnn], [140, Jee], [140, Jnn], [141, Jee], [141, Jnn], [142, Jee], [142, Jnn], [143, Jee], [143, Jnn], [144, Jee], [144, Jnn], [145, Jee], [145, Jnn], [146, Jee], [146, Jnn], [147, Jee], [147, Jnn], [148, Jee], [148, Jnn], [149, Jee], [149, Jnn], [150, Jee], [150, Jnn], [152, Jee], [153, Jee], [153, Jnn], [155, Jee], [160, Jee], [161, Jee], [161, Jnn], [162, Jee], [162, Jnn], [163, Jee], [163, Jnn], [164, Jee], [164, Jnn], [165, Jee], [165, Jnn], [166, Jee], [166, Jnn], [167, Jee], [167, Jnn], [168, Jee], [169, Jee], [170, Jee], [171, Jnn], [172, Jee], [172, Jnn], [173, Jee], [173, Jnn], [174, Jee], [174, Jnn], [175, Jee], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [180, Jnn], [182, Jee], [183, Jee], [183, Jnn], [184, Jee], [185, Jee], [186, Jee], [186, Jnn], [187, Jee], [187, Jnn], [188, Jee], [188, Jnn], [189, Jee], [193, Jee], [194, Jee], [195, Jee], [196, Jee], [197, Jee], [197, Jnn], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jee], [201, Jnn], [202, Jnn], [204, Jee], [204, Jnn], [205, Jee], [206, Jee], [206, Jnn], [207, Jee], [207, Jnn], [208, Jee], [209, Jnn], [212, Jee], [212, Jnn], [213, Jee], [214, Jee], [215, Jee], [216, Jee], [216, Jnn], [217, Jnn], [218, Jnn], [223, Jee], [225, Jee], [225, Jnn], [226, Jee], [228, Jee], [229, Jee], [231, Jee], [231, Jnn], [232, Jee], [233, Jee], [234, Jnn], [235, Jee], [240, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [244, Jee], [245, Jee], [245, Jnn], [250, Jee], [251, Jee], [251, Jnn], [252, Jee], [252, Jnn], [253, Jee], [255, Jee], [255, Jnn], [256, Jee], [256, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [267, Jee], [267, Jnn], [268, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [285, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev110+gcc0a13d hera_qm: 2.1.5.dev6+g23b7cf7 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 25.29 minutes.