Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1566 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460524/zen.2460524.16908.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1566 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460524/zen.2460524.16908.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
65.545% of waterfall flagged to start. 66.173% of waterfall flagged after flagging z > 5.0 outliers.
66.317% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags. Flagging an additional 0 integrations and 9 channels. Flagging 8 channels previously flagged 25.00% or more. Flagging 92 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 68.582% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1566 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460524/zen.2460524.16908.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460524/2460524_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460524.1689664545, 2460524.332712082], [2460524.3366267662, 2460524.3367386144], [2460524.338975576, 2460524.3390874243], [2460524.342442868, 2460524.342554716], [2460524.3454627665, 2460524.3455746146], [2460524.3474760326, 2460524.347699729], [2460524.350160387, 2460524.350272235], [2460524.3577660583, 2460524.3578779064], [2460524.360338565, 2460524.360450413], [2460524.3613451975, 2460524.361568894], [2460524.3631347674, 2460524.3632466155], [2460524.3633584636, 2460524.3634703117], [2460524.368950869, 2460524.369062717], [2460524.370181198, 2460524.3704048945], [2460524.3717470714, 2460524.3718589195], [2460524.374095882, 2460524.37420773], [2460524.3746551224, 2460524.3747669705], [2460524.3765565404, 2460524.3766683885], [2460524.377675021, 2460524.377786869], [2460524.3783461098, 2460524.378457958], [2460524.3809186164, 2460524.3810304645], [2460524.3820370976, 2460524.3821489457], [2460524.3828200344, 2460524.3829318825], [2460524.384721452, 2460524.3848333], [2460524.385616237, 2460524.385728085], [2460524.3861754774, 2460524.3862873255], [2460524.3874058067, 2460524.387517655], [2460524.387741351, 2460524.3879650473], [2460524.3881887435, 2460524.3884124397], [2460524.389083528, 2460524.3894190723], [2460524.3904257054, 2460524.3905375535], [2460524.391208642, 2460524.3913204903], [2460524.391879731, 2460524.391991579], [2460524.392103427, 2460524.3923271233], [2460524.3935574526, 2460524.3936693007], [2460524.393781149, 2460524.393892997], [2460524.394452237, 2460524.394564085], [2460524.3959062626, 2460524.396129959], [2460524.396465503, 2460524.3965773513], [2460524.398366921, 2460524.3985906173], [2460524.3989261617, 2460524.399261706], [2460524.3995972504, 2460524.3997090985], [2460524.4003801867, 2460524.400603883], [2460524.401498668, 2460524.401610516], [2460524.401722364, 2460524.4018342122], [2460524.4028408453, 2460524.4030645415], [2460524.40373563, 2460524.4039593264], [2460524.405748896, 2460524.405860744], [2460524.405972592, 2460524.40608444], [2460524.4072029213, 2460524.4073147695], [2460524.4074266176, 2460524.4075384657], [2460524.4080977063, 2460524.4082095544], [2460524.4083214025, 2460524.4084332506], [2460524.408992491, 2460524.4091043393], [2460524.4092161874, 2460524.4093280355], [2460524.410893909, 2460524.4110057573], [2460524.411117605, 2460524.411229453], [2460524.4126834786, 2460524.4127953267], [2460524.413019023, 2460524.413130871], [2460524.4136901116, 2460524.413913808], [2460524.4148085928, 2460524.415032289], [2460524.4153678333, 2460524.4155915296], [2460524.415815226, 2460524.415927074], [2460524.41615077, 2460524.4162626183], [2460524.4167100107, 2460524.416821859], [2460524.4177166433, 2460524.4178284914], [2460524.4179403395, 2460524.4180521877], [2460524.418164036, 2460524.4188351245], [2460524.4189469726, 2460524.4190588207], [2460524.421072087, 2460524.421295783], [2460524.4215194792, 2460524.4217431755], [2460524.4224142637, 2460524.42263796], [2460524.422861656, 2460524.4229735043], [2460524.4234208968, 2460524.423644593], [2460524.423868289, 2460524.4240919854], [2460524.424539378, 2460524.424651226], [2460524.4248749223, 2460524.4249867704], [2460524.4252104666, 2460524.4253223147], [2460524.425546011, 2460524.425657859], [2460524.425769707, 2460524.4258815553], [2460524.427335581, 2460524.427671125], [2460524.4282303653, 2460524.4283422134], [2460524.4285659096, 2460524.428789606], [2460524.42912515, 2460524.4292369983], [2460524.4302436314, 2460524.4304673276], [2460524.4312502644, 2460524.4313621125], [2460524.432927986, 2460524.4331516824], [2460524.4334872267, 2460524.433599075], [2460524.434046467, 2460524.434270163], [2460524.434382011, 2460524.4344938593], [2460524.435388644, 2460524.4355004923], [2460524.436059733, 2460524.436283429], [2460524.436954518, 2460524.437178214], [2460524.4375137584, 2460524.4377374547], [2460524.4385203915, 2460524.4386322396], [2460524.4387440877, 2460524.43919148], [2460524.439303328, 2460524.439415176], [2460524.4399744165, 2460524.4400862646], [2460524.440309961, 2460524.4408692014], [2460524.4418758345, 2460524.4426587713], [2460524.44332986, 2460524.443441708], [2460524.444336493, 2460524.4445601893], [2460524.4446720374, 2460524.4448957336], [2460524.44567867, 2460524.445790518], [2460524.445902366, 2460524.4460142143], [2460524.4472445436, 2460524.4480274804], [2460524.4481393285, 2460524.4483630247], [2460524.4489222653, 2460524.4490341134], [2460524.4499288984, 2460524.4500407465], [2460524.450376291, 2460524.4507118347], [2460524.450823683, 2460524.4514947715], [2460524.4531724933, 2460524.45395543], [2460524.454067278, 2460524.4541791263], [2460524.4542909744, 2460524.4544028225], [2460524.454738367, 2460524.454850215], [2460524.454962063, 2460524.4554094556], [2460524.456416088, 2460524.4567516325], [2460524.4569753287, 2460524.457310873], [2460524.4575345693, 2460524.4576464174], [2460524.4588767467, 2460524.458988595], [2460524.4597715316, 2460524.4605544684], [2460524.461113709, 2460524.4615611015], [2460524.4622321897, 2460524.462344038], [2460524.462455886, 2460524.4627914303], [2460524.4630151265, 2460524.4631269746], [2460524.4639099115, 2460524.4640217596], [2460524.4641336077, 2460524.464357304], [2460524.464469152, 2460524.4646928483], [2460524.4650283926, 2460524.465252089], [2460524.465363937, 2460524.465475785], [2460524.465587633, 2460524.4660350257], [2460524.4665942662, 2460524.4667061144], [2460524.467153507, 2460524.4674890507], [2460524.467712747, 2460524.468607532], [2460524.4691667724, 2460524.4693904687], [2460524.4699497093, 2460524.47050895], [2460524.470844494, 2460524.4714037348], [2460524.471851127, 2460524.472634064], [2460524.472745912, 2460524.4730814565], [2460524.4733051523, 2460524.4734170004], [2460524.474199937, 2460524.4743117853], [2460524.4745354815, 2460524.4746473297], [2460524.474982874, 2460524.4753184184], [2460524.4754302665, 2460524.4756539627], [2460524.475765811, 2460524.476101355], [2460524.476884292, 2460524.4773316844], [2460524.4775553807, 2460524.477779077], [2460524.4783383175, 2460524.478673862], [2460524.4788975576, 2460524.4790094057], [2460524.479233102, 2460524.47934495], [2460524.479456798, 2460524.4795686463], [2460524.4796804944, 2460524.4797923425], [2460524.480127887, 2460524.4807989756], [2460524.4814700643, 2460524.4816937605], [2460524.482029305, 2460524.482253001], [2460524.4827003935, 2460524.4828122417], [2460524.4829240898, 2460524.483035938], [2460524.4834833303, 2460524.4837070266], [2460524.484042571, 2460524.4843781153], [2460524.484489963, 2460524.484713659], [2460524.4851610516, 2460524.485496596], [2460524.4858321403, 2460524.4860558365], [2460524.4861676847, 2460524.486615077], [2460524.4867269252, 2460524.4868387734], [2460524.4869506215, 2460524.4870624696], [2460524.487398014, 2460524.48762171], [2460524.488292799, 2460524.488516495], [2460524.4888520394, 2460524.489187584], [2460524.4896349763, 2460524.4904179126], [2460524.490865305, 2460524.4912008494], [2460524.49176009, 2460524.4920956343], [2460524.492878571, 2460524.4931022674], [2460524.4933259636, 2460524.493773356], [2460524.4939970523, 2460524.494444445], [2460524.494668141, 2460524.494779989], [2460524.49589847, 2460524.4964577104], [2460524.4967932547, 2460524.496905103], [2460524.497128799, 2460524.4973524953], [2460524.4974643434, 2460524.4975761916], [2460524.4976880397, 2460524.497911736], [2460524.4985828246, 2460524.4986946727], [2460524.498806521, 2460524.499142065], [2460524.4994776095, 2460524.4997013058], [2460524.5002605463, 2460524.5003723945], [2460524.500707939, 2460524.500931635], [2460524.501155331, 2460524.501379027], [2460524.502161964, 2460524.50238566], [2460524.5028330525, 2460524.503056749], [2460524.503392293, 2460524.5035041412], [2460524.5036159893, 2460524.5038396856], [2460524.5045107743, 2460524.5047344705], [2460524.5048463186, 2460524.505181863], [2460524.505405559, 2460524.5056292554], [2460524.5059648, 2460524.506300344], [2460524.5065240404, 2460524.5066358885], [2460524.5067477366, 2460524.5068595847], [2460524.5073069767, 2460524.507530673], [2460524.507642521, 2460524.5080899135], [2460524.5082017616, 2460524.508425458], [2460524.5088728503, 2460524.5089846984], [2460524.5090965466, 2460524.509320243], [2460524.5097676353, 2460524.5098794834], [2460524.510326876, 2460524.510438724], [2460524.51066242, 2460524.5108861164], [2460524.5118927495, 2460524.5121164457], [2460524.512228294, 2460524.512340142], [2460524.512675686, 2460524.512899382], [2460524.513794167, 2460524.514017863], [2460524.5142415594, 2460524.5143534075], [2460524.5152481925, 2460524.5160311293], [2460524.5161429774, 2460524.5162548255], [2460524.51659037, 2460524.516702218], [2460524.516925914, 2460524.5170377623], [2460524.517485155, 2460524.5179325473], [2460524.518156243, 2460524.5183799393], [2460524.5186036355, 2460524.5187154836], [2460524.51893918, 2460524.519051028], [2460524.519274724, 2460524.5194984204], [2460524.5196102685, 2460524.5197221166]] freq_flags: [[46859741.2109375, 50277709.9609375], [50521850.5859375, 50643920.8984375], [50765991.2109375, 50888061.5234375], [51010131.8359375, 52719116.2109375], [53817749.0234375, 54916381.8359375], [62362670.8984375, 62606811.5234375], [69931030.2734375, 70663452.1484375], [74935913.0859375, 75057983.3984375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [124862670.8984375, 125228881.8359375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137191772.4609375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155258178.7109375, 155380249.0234375], [159164428.7109375, 159286499.0234375], [170028686.5234375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jnn], [9, Jnn], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jee], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [41, Jnn], [42, Jee], [42, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jnn], [49, Jnn], [50, Jnn], [51, Jee], [51, Jnn], [52, Jnn], [54, Jee], [54, Jnn], [57, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jee], [66, Jee], [67, Jee], [67, Jnn], [68, Jee], [68, Jnn], [69, Jnn], [70, Jnn], [71, Jee], [71, Jnn], [72, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jee], [82, Jnn], [83, Jee], [83, Jnn], [84, Jee], [84, Jnn], [85, Jee], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [91, Jee], [91, Jnn], [92, Jee], [92, Jnn], [97, Jnn], [98, Jee], [98, Jnn], [99, Jee], [99, Jnn], [100, Jee], [100, Jnn], [101, Jee], [101, Jnn], [102, Jee], [102, Jnn], [103, Jee], [103, Jnn], [104, Jee], [104, Jnn], [105, Jee], [105, Jnn], [106, Jee], [107, Jee], [108, Jee], [108, Jnn], [109, Jee], [109, Jnn], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [118, Jee], [118, Jnn], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jee], [122, Jnn], [123, Jnn], [125, Jee], [126, Jee], [126, Jnn], [127, Jnn], [130, Jee], [131, Jee], [131, Jnn], [132, Jee], [133, Jee], [133, Jnn], [135, Jee], [136, Jee], [136, Jnn], [137, Jee], [137, Jnn], [138, Jee], [138, Jnn], [139, Jee], [139, Jnn], [140, Jee], [140, Jnn], [141, Jee], [141, Jnn], [142, Jee], [142, Jnn], [143, Jee], [143, Jnn], [144, Jee], [144, Jnn], [145, Jee], [145, Jnn], [146, Jnn], [149, Jnn], [152, Jee], [152, Jnn], [153, Jee], [153, Jnn], [155, Jee], [155, Jnn], [159, Jee], [159, Jnn], [160, Jee], [160, Jnn], [161, Jee], [161, Jnn], [162, Jee], [162, Jnn], [163, Jee], [163, Jnn], [164, Jee], [164, Jnn], [165, Jee], [165, Jnn], [166, Jee], [166, Jnn], [167, Jee], [167, Jnn], [169, Jee], [170, Jee], [171, Jee], [171, Jnn], [172, Jee], [172, Jnn], [173, Jee], [173, Jnn], [174, Jee], [174, Jnn], [175, Jee], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jnn], [181, Jee], [181, Jnn], [182, Jee], [183, Jee], [183, Jnn], [185, Jee], [186, Jee], [186, Jnn], [187, Jnn], [188, Jee], [188, Jnn], [189, Jee], [189, Jnn], [190, Jee], [190, Jnn], [191, Jnn], [193, Jee], [194, Jee], [195, Jee], [196, Jee], [196, Jnn], [197, Jee], [197, Jnn], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jee], [201, Jnn], [202, Jnn], [204, Jee], [204, Jnn], [206, Jee], [206, Jnn], [207, Jee], [207, Jnn], [208, Jee], [208, Jnn], [209, Jnn], [212, Jee], [212, Jnn], [213, Jee], [215, Jee], [215, Jnn], [216, Jee], [216, Jnn], [217, Jnn], [218, Jnn], [225, Jee], [225, Jnn], [226, Jee], [226, Jnn], [228, Jnn], [229, Jee], [231, Jee], [231, Jnn], [232, Jee], [233, Jee], [234, Jnn], [235, Jee], [235, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jnn], [250, Jee], [250, Jnn], [251, Jee], [251, Jnn], [252, Jee], [252, Jnn], [253, Jee], [253, Jnn], [255, Jee], [255, Jnn], [256, Jee], [256, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [267, Jee], [267, Jnn], [268, Jee], [268, Jnn], [270, Jee], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [285, Jee], [285, Jnn], [295, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.dev110+gcc0a13d hera_qm: 2.1.5.dev6+g23b7cf7 hera_filters: 0.1.5
hera_notebook_templates: 0.1.dev734+g90f16f4 pyuvdata: 2.4.2
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 194.09 minutes.