Antenna Classification Daily SummaryĀ¶
by Josh Dillon last updated June 19, 2023
This notebook parses and summarizes the output of the file_calibration
notebook to produce a report on per-antenna malfunctions on a daily basis.
Quick links:
ā¢ Summary of Per Antenna IssuesĀ¶
ā¢ Figure 1: Per File Overall Antenna Classification SummaryĀ¶
ā¢ Figure 2: Per Classifier Antenna Flagging SummaryĀ¶
ā¢ Figure 3: Array Visualization of Overall Daily ClassificationĀ¶
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import pandas as pd
import glob
import os
import matplotlib.pyplot as plt
from hera_cal import io, utils
from hera_qm import ant_class
from uvtools.plot import plot_antpos, plot_antclass
%matplotlib inline
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
SettingsĀ¶
# Parse settings from environment
ANT_CLASS_FOLDER = os.environ.get("ANT_CLASS_FOLDER", "./")
SUM_FILE = os.environ.get("SUM_FILE", None)
# ANT_CLASS_FOLDER = "/mnt/sn1/2460330"
# SUM_FILE = "/mnt/sn1/2460330/zen.2460330.25463.sum.uvh5"
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"
for param in ['ANT_CLASS_FOLDER', 'SUM_FILE', 'OC_SKIP_OUTRIGGERS']:
print(f"{param} = '{eval(param)}'")
ANT_CLASS_FOLDER = '/mnt/sn1/data2/2460728' SUM_FILE = '/mnt/sn1/data2/2460728/zen.2460728.45933.sum.uvh5' OC_SKIP_OUTRIGGERS = 'True'
if SUM_FILE is not None:
from astropy.time import Time, TimeDelta
utc = Time(float(SUM_FILE.split('zen.')[-1].split('.sum.uvh5')[0]), format='jd').datetime
print(f'Date: {utc.month}-{utc.day}-{utc.year}')
Date: 2-21-2025
# set thresholds for fraction of the day
overall_thresh = .1
all_zero_thresh = .1
eo_zeros_thresh = .1
xengine_diff_thresh = .1
cross_pol_thresh = .5
bad_fem_thresh = .1
high_power_thresh = .1
low_power_thresh = .1
low_corr_thresh = .1
bad_shape_thresh = .5
excess_rfi_thresh = .1
chisq_thresh = .25
Load classifications and other metadataĀ¶
# Load csvs
csv_files = sorted(glob.glob(os.path.join(ANT_CLASS_FOLDER, '*.ant_class.csv')))
jds = [float(f.split('/')[-1].split('zen.')[-1].split('.sum')[0]) for f in csv_files]
tables = [pd.read_csv(f).dropna(axis=0, how='all') for f in csv_files]
table_cols = tables[0].columns[1::2]
class_cols = tables[0].columns[2::2]
print(f'Found {len(csv_files)} csv files starting with {csv_files[0]}')
Found 1851 csv files starting with /mnt/sn1/data2/2460728/zen.2460728.25241.sum.ant_class.csv
# parse ant_strings
ap_strs = np.array(tables[0]['Antenna'])
ants = sorted(set(int(a[:-1]) for a in ap_strs))
translator = ''.maketrans('e', 'n') | ''.maketrans('n', 'e')
# get node numbers
node_dict = {ant: 'Unknown' for ant in ants}
try:
from hera_mc import cm_hookup
hookup = cm_hookup.get_hookup('default')
for ant_name in hookup:
ant = int("".join(filter(str.isdigit, ant_name)))
if ant in node_dict:
if hookup[ant_name].get_part_from_type('node')['E<ground'] is not None:
node_dict[ant] = int(hookup[ant_name].get_part_from_type('node')['E<ground'][1:])
except:
pass
nodes = sorted(set(node_dict.values()))
def classification_array(col):
class_array = np.vstack([t[col] for t in tables])
class_array[class_array == 'good'] = 1.7
class_array[class_array == 'suspect'] = 1
class_array[class_array == 'bad'] = 0
return class_array.astype(float)
if SUM_FILE is not None:
hd = io.HERADataFastReader(SUM_FILE)
ap_tuples = [(int(ap[:-1]), {'e': 'Jee', 'n': 'Jnn'}[ap[-1]]) for ap in ap_strs]
bad_bools = np.mean(classification_array('Antenna Class') == 0, axis=0) > overall_thresh
bad_aps = [ap_tuples[i] for i in np.arange(len(ap_tuples))[bad_bools]]
suspect_bools = np.mean(classification_array('Antenna Class') == 1, axis=0) > overall_thresh
suspect_aps = [ap_tuples[i] for i in np.arange(len(ap_tuples))[suspect_bools] if ap_tuples[i] not in bad_aps]
good_aps = [ap for ap in ap_tuples if ap not in bad_aps and ap not in suspect_aps]
overall_class = ant_class.AntennaClassification(bad=bad_aps, suspect=suspect_aps, good=good_aps)
autos, _, _ = hd.read(bls=[bl for bl in hd.bls if utils.split_bl(bl)[0] == utils.split_bl(bl)[1]], read_flags=False, read_nsamples=False)
avg_unflagged_auto = {}
for pol in ['ee', 'nn']:
unflagged_autos = [autos[bl] for bl in autos if bl[2] == pol and overall_class[utils.split_bl(bl)[0]] != 'bad']
if len(unflagged_autos) > 0:
avg_unflagged_auto[pol] = np.mean(unflagged_autos, axis=(0, 1))
else:
avg_unflagged_auto[pol] = np.zeros(len(hd.freqs), dtype=complex)
Figure out and summarize per-antenna issuesĀ¶
def print_issue_summary(bad_ant_strs, title, notes='', plot=False):
'''Print report for list of bad antenna polarizations strings'''
unique_bad_antnums = [int(ap[:-1]) for ap in bad_ant_strs]
display(HTML(f'<h2>{title}: ({len(bad_ant_strs)} antpols across {len(set([ba[:-1] for ba in bad_ant_strs]))} antennas)</h2>'))
if len(notes) > 0:
display(HTML(f'<h4>{notes}</h4>'))
if len(bad_ant_strs) > 0:
print(f'All Bad Antpols: {", ".join(bad_ant_strs)}\n')
for node in nodes:
if np.any([node == node_dict[a] for a in unique_bad_antnums]):
aps = [ap for ap in bad_ant_strs if node_dict[int(ap[:-1])] == node]
whole_ants = [str(wa) for wa in set([int(ap[:-1]) for ap in aps if ap.translate(translator) in bad_ant_strs])]
single_pols = [ap for ap in aps if ap.translate(translator) not in bad_ant_strs]
print(f'Node {node}:')
print(f'\tAntpols ({len(aps)} total): {", ".join(aps)}')
print(f'\tWhole Ants ({len(whole_ants)} total): {", ".join(whole_ants)}')
print(f'\tSingle Pols ({len(single_pols)} total): {", ".join(single_pols)}')
if plot and SUM_FILE is not None:
fig, axes = plt.subplots(1, 2, figsize=(12,4), dpi=70, sharey=True, gridspec_kw={'wspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.semilogy(autos.freqs / 1e6, avg_unflagged_auto[pol], 'k--', label='Average\nUnflagged\nAuto')
for ap in aps:
ant = int(ap[:-1]), utils.comply_pol(ap[-1])
auto_bl = utils.join_bl(ant, ant)
if auto_bl[2] == pol:
ax.semilogy(autos.freqs / 1e6, np.mean(autos[auto_bl], axis=0), label=ap)
ax.legend()
ax.set_xlim([40, 299])
ax.set_title(f'{title} on Node {node} ({pol}-antennas)')
ax.set_xlabel('Frequency (MHz)')
axes[0].set_ylabel('Single File Raw Autocorrelation')
plt.tight_layout()
plt.show()
# precompute various helpful quantities
all_slopes = np.vstack([t['Autocorr Slope'] for t in tables])
median_slope = np.median(all_slopes)
bad_slopes = np.vstack([t['Autocorr Slope Class'] for t in tables]) == 'bad'
suspect_slopes = np.vstack([t['Autocorr Slope Class'] for t in tables]) == 'suspect'
bad_shapes = np.vstack([t['Autocorr Shape Class'] for t in tables]) == 'bad'
suspect_shapes = np.vstack([t['Autocorr Shape Class'] for t in tables]) == 'suspect'
all_powers = np.vstack([t['Autocorr Power'] for t in tables])
median_power = np.median(all_powers)
bad_powers = np.vstack([t['Autocorr Power Class'] for t in tables]) == 'bad'
suspect_powers = np.vstack([t['Autocorr Power Class'] for t in tables]) == 'suspect'
bad_rfi = np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'bad'
suspect_rfi = np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'suspect'
# find all zeros
all_zeros_strs = ap_strs[np.mean(np.vstack([t['Dead? Class'] for t in tables]) == 'bad', axis=0) > all_zero_thresh]
# find even/odd zeros
eo_zeros_strs = ap_strs[np.mean(np.vstack([t['Even/Odd Zeros Class'] for t in tables]) == 'bad', axis=0) > eo_zeros_thresh]
eo_zeros_strs = [ap for ap in eo_zeros_strs if ap not in all_zeros_strs]
# find cross-polarized antennas
cross_pol_strs = ap_strs[np.mean(np.vstack([t['Cross-Polarized Class'] for t in tables]) == 'bad', axis=0) > cross_pol_thresh]
cross_pol_strs = [ap for ap in cross_pol_strs if ap not in all_zeros_strs]
# find FEM power issues: must be low power, high slope, and bad or suspect in power, slope, rfi, and shape
fem_off_prod = (bad_powers + .5 * suspect_powers) * (bad_slopes + .5 * suspect_slopes)
fem_off_prod *= (bad_rfi + .5 * suspect_rfi) * (bad_shapes + .5 * suspect_shapes)
fem_off_strs = ap_strs[np.mean(fem_off_prod * (all_powers < median_power) * (all_slopes > median_slope), axis=0) > .1]
# find high power issues
high_power_strs = ap_strs[np.mean(bad_powers & (all_powers > median_power), axis=0) > high_power_thresh]
# find other low power issues
low_power_strs = ap_strs[np.mean(bad_powers & (all_powers < median_power), axis=0) > low_power_thresh]
low_power_strs = [ap for ap in low_power_strs if ap not in all_zeros_strs and ap not in fem_off_strs]
# find low correlation (but not low power)
low_corr_strs = ap_strs[np.mean(np.vstack([t['Low Correlation Class'] for t in tables]) == 'bad', axis=0) > low_corr_thresh]
low_corr_strs = [ap for ap in low_corr_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) | set(fem_off_strs))]
# find bad bandpasses
bad_bandpass_strs = ap_strs[np.mean(bad_shapes, axis=0) > bad_shape_thresh]
bad_bandpass_strs = [ap for ap in bad_bandpass_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs))]
# find antennas with excess RFI
excess_rfi_strs = ap_strs[np.mean(np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'bad', axis=0) > excess_rfi_thresh]
excess_rfi_strs = [ap for ap in excess_rfi_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) | set(fem_off_strs) |
set(bad_bandpass_strs) | set(high_power_strs))]
# find bad x-engine diffs
xengine_diff_strs = ap_strs[np.mean(np.vstack([t['Bad Diff X-Engines Class'] for t in tables]) == 'bad', axis=0) > xengine_diff_thresh]
xengine_diff_strs = [ap for ap in xengine_diff_strs if ap not in (set(bad_bandpass_strs) | set(low_power_strs) | set(excess_rfi_strs) | set(low_corr_strs) |
set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs) | set(eo_zeros_strs))]
# find antennas with high redcal chi^2
chisq_strs = ap_strs[np.mean(np.vstack([t['Redcal chi^2 Class'] for t in tables]) == 'bad', axis=0) > chisq_thresh]
chisq_strs = [ap for ap in chisq_strs if ap not in (set(bad_bandpass_strs) | set(low_power_strs) | set(excess_rfi_strs) | set(low_corr_strs) |
set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs) | set(eo_zeros_strs) | set(xengine_diff_strs))]
if OC_SKIP_OUTRIGGERS:
chisq_strs = [ap for ap in chisq_strs if int(ap[:-1]) < 320]
# collect all results
to_print = [(all_zeros_strs, 'All-Zeros', 'These antennas have visibilities that are more than half zeros.'),
(eo_zeros_strs, 'Excess Zeros in Either Even or Odd Spectra',
'These antennas are showing evidence of packet loss or X-engine failure.', True),
(xengine_diff_strs, 'Excess Power in X-Engine Diffs',
'These antennas are showing evidence of mis-written packets in either the evens or the odds.', True),
(cross_pol_strs, 'Cross-Polarized', 'These antennas have their east and north cables swapped.'),
(fem_off_strs, 'Likely FEM Power Issue', 'These antennas have low power and anomolously high slopes.', True),
(high_power_strs, 'High Power', 'These antennas have high median power.', True),
(low_power_strs, 'Other Low Power Issues', 'These antennas have low power, but are not all-zeros and not FEM off.', True),
(low_corr_strs, 'Low Correlation, But Not Low Power', 'These antennas are low correlation, but their autocorrelation power levels look OK.'),
(bad_bandpass_strs, 'Bad Bandpass Shapes, But Not Bad Power',
'These antennas have unusual bandpass shapes, but are not all-zeros, high power, low power, or FEM off.', True),
(excess_rfi_strs, 'Excess RFI', 'These antennas have excess RMS after DPSS filtering (likely RFI), but not low or high power or a bad bandpass.', True),
(chisq_strs, 'Redcal chi^2', 'These antennas have been idenfied as not redundantly calibrating well, even after passing the above checks.')]
def print_high_level_summary():
for tp in sorted(to_print, key=lambda x: len(x[0]), reverse=True):
print(f'{len(tp[0])} antpols (on {len(set([ap[:-1] for ap in tp[0]]))} antennas) frequently flagged for {tp[1]}.')
def print_all_issue_summaries():
for tp in to_print:
print_issue_summary(*tp)
Summary of Per-Antenna IssuesĀ¶
print_high_level_summary()
34 antpols (on 32 antennas) frequently flagged for Excess RFI. 25 antpols (on 22 antennas) frequently flagged for Likely FEM Power Issue. 14 antpols (on 12 antennas) frequently flagged for Other Low Power Issues. 13 antpols (on 13 antennas) frequently flagged for Bad Bandpass Shapes, But Not Bad Power. 11 antpols (on 10 antennas) frequently flagged for Low Correlation, But Not Low Power. 10 antpols (on 8 antennas) frequently flagged for High Power. 7 antpols (on 5 antennas) frequently flagged for Excess Power in X-Engine Diffs. 4 antpols (on 2 antennas) frequently flagged for Cross-Polarized. 2 antpols (on 2 antennas) frequently flagged for Redcal chi^2. 0 antpols (on 0 antennas) frequently flagged for All-Zeros. 0 antpols (on 0 antennas) frequently flagged for Excess Zeros in Either Even or Odd Spectra.
print_all_issue_summaries()
All-Zeros: (0 antpols across 0 antennas)
These antennas have visibilities that are more than half zeros.
Excess Zeros in Either Even or Odd Spectra: (0 antpols across 0 antennas)
These antennas are showing evidence of packet loss or X-engine failure.
Excess Power in X-Engine Diffs: (7 antpols across 5 antennas)
These antennas are showing evidence of mis-written packets in either the evens or the odds.
All Bad Antpols: 28n, 44e, 44n, 71e, 71n, 188n, 340n Node 1: Antpols (1 total): 28n Whole Ants (0 total): Single Pols (1 total): 28n
Node 4: Antpols (2 total): 71e, 71n Whole Ants (1 total): 71 Single Pols (0 total):
Node 5: Antpols (2 total): 44e, 44n Whole Ants (1 total): 44 Single Pols (0 total):
Node 15: Antpols (1 total): 188n Whole Ants (0 total): Single Pols (1 total): 188n
Node 21: Antpols (1 total): 340n Whole Ants (0 total): Single Pols (1 total): 340n
Cross-Polarized: (4 antpols across 2 antennas)
These antennas have their east and north cables swapped.
All Bad Antpols: 44e, 44n, 71e, 71n Node 4: Antpols (2 total): 71e, 71n Whole Ants (1 total): 71 Single Pols (0 total): Node 5: Antpols (2 total): 44e, 44n Whole Ants (1 total): 44 Single Pols (0 total):
Likely FEM Power Issue: (25 antpols across 22 antennas)
These antennas have low power and anomolously high slopes.
All Bad Antpols: 4e, 10n, 34e, 45e, 48e, 48n, 53e, 68e, 75e, 75n, 109n, 135e, 143n, 170e, 198n, 200e, 216n, 218e, 238n, 239e, 322e, 329n, 332e, 332n, 333e Node 1: Antpols (1 total): 4e Whole Ants (0 total): Single Pols (1 total): 4e
Node 2: Antpols (1 total): 10n Whole Ants (0 total): Single Pols (1 total): 10n
Node 3: Antpols (2 total): 53e, 68e Whole Ants (0 total): Single Pols (2 total): 53e, 68e
Node 5: Antpols (4 total): 45e, 75e, 75n, 322e Whole Ants (1 total): 75 Single Pols (2 total): 45e, 322e
Node 6: Antpols (3 total): 34e, 48e, 48n Whole Ants (1 total): 48 Single Pols (1 total): 34e
Node 10: Antpols (1 total): 109n Whole Ants (0 total): Single Pols (1 total): 109n
Node 12: Antpols (3 total): 135e, 329n, 333e Whole Ants (0 total): Single Pols (3 total): 135e, 329n, 333e
Node 14: Antpols (1 total): 143n Whole Ants (0 total): Single Pols (1 total): 143n
Node 15: Antpols (1 total): 170e Whole Ants (0 total): Single Pols (1 total): 170e
Node 17: Antpols (3 total): 198n, 216n, 218e Whole Ants (0 total): Single Pols (3 total): 198n, 216n, 218e
Node 18: Antpols (3 total): 200e, 238n, 239e Whole Ants (0 total): Single Pols (3 total): 200e, 238n, 239e
Node 21: Antpols (2 total): 332e, 332n Whole Ants (1 total): 332 Single Pols (0 total):
High Power: (10 antpols across 8 antennas)
These antennas have high median power.
All Bad Antpols: 8e, 8n, 9e, 47e, 51n, 58e, 58n, 61e, 232e, 333n Node 2: Antpols (3 total): 8e, 8n, 9e Whole Ants (1 total): 8 Single Pols (1 total): 9e
Node 3: Antpols (1 total): 51n Whole Ants (0 total): Single Pols (1 total): 51n
Node 5: Antpols (2 total): 58e, 58n Whole Ants (1 total): 58 Single Pols (0 total):
Node 6: Antpols (2 total): 47e, 61e Whole Ants (0 total): Single Pols (2 total): 47e, 61e
Node 12: Antpols (1 total): 333n Whole Ants (0 total): Single Pols (1 total): 333n
Node 21: Antpols (1 total): 232e Whole Ants (0 total): Single Pols (1 total): 232e
Other Low Power Issues: (14 antpols across 12 antennas)
These antennas have low power, but are not all-zeros and not FEM off.
All Bad Antpols: 67n, 82e, 98e, 99e, 99n, 104n, 119n, 120e, 128e, 137e, 218n, 251e, 262e, 262n Node 3: Antpols (1 total): 67n Whole Ants (0 total): Single Pols (1 total): 67n
Node 7: Antpols (6 total): 82e, 98e, 99e, 99n, 119n, 137e Whole Ants (1 total): 99 Single Pols (4 total): 82e, 98e, 119n, 137e
Node 8: Antpols (2 total): 104n, 120e Whole Ants (0 total): Single Pols (2 total): 104n, 120e
Node 10: Antpols (1 total): 128e Whole Ants (0 total): Single Pols (1 total): 128e
Node 17: Antpols (1 total): 218n Whole Ants (0 total): Single Pols (1 total): 218n
Node 20: Antpols (2 total): 262e, 262n Whole Ants (1 total): 262 Single Pols (0 total):
Node 22: Antpols (1 total): 251e Whole Ants (0 total): Single Pols (1 total): 251e
Low Correlation, But Not Low Power: (11 antpols across 10 antennas)
These antennas are low correlation, but their autocorrelation power levels look OK.
All Bad Antpols: 10e, 27e, 28e, 104e, 171n, 198e, 326e, 326n, 328e, 329e, 331e Node 1: Antpols (2 total): 27e, 28e Whole Ants (0 total): Single Pols (2 total): 27e, 28e Node 2: Antpols (1 total): 10e Whole Ants (0 total): Single Pols (1 total): 10e Node 8: Antpols (1 total): 104e Whole Ants (0 total): Single Pols (1 total): 104e Node 10: Antpols (1 total): 328e Whole Ants (0 total): Single Pols (1 total): 328e Node 12: Antpols (1 total): 329e Whole Ants (0 total): Single Pols (1 total): 329e Node 16: Antpols (1 total): 171n Whole Ants (0 total): Single Pols (1 total): 171n Node 17: Antpols (1 total): 198e Whole Ants (0 total): Single Pols (1 total): 198e Node 21: Antpols (3 total): 326e, 326n, 331e Whole Ants (1 total): 326 Single Pols (1 total): 331e
Bad Bandpass Shapes, But Not Bad Power: (13 antpols across 13 antennas)
These antennas have unusual bandpass shapes, but are not all-zeros, high power, low power, or FEM off.
All Bad Antpols: 27e, 28e, 29n, 32n, 33n, 46e, 78e, 98n, 130n, 161n, 180n, 199n, 209n Node 1: Antpols (3 total): 27e, 28e, 29n Whole Ants (0 total): Single Pols (3 total): 27e, 28e, 29n
Node 2: Antpols (2 total): 32n, 33n Whole Ants (0 total): Single Pols (2 total): 32n, 33n
Node 5: Antpols (1 total): 46e Whole Ants (0 total): Single Pols (1 total): 46e
Node 6: Antpols (1 total): 78e Whole Ants (0 total): Single Pols (1 total): 78e
Node 7: Antpols (1 total): 98n Whole Ants (0 total): Single Pols (1 total): 98n
Node 10: Antpols (1 total): 130n Whole Ants (0 total): Single Pols (1 total): 130n
Node 13: Antpols (2 total): 161n, 180n Whole Ants (0 total): Single Pols (2 total): 161n, 180n
Node 17: Antpols (1 total): 199n Whole Ants (0 total): Single Pols (1 total): 199n
Node 20: Antpols (1 total): 209n Whole Ants (0 total): Single Pols (1 total): 209n
Excess RFI: (34 antpols across 32 antennas)
These antennas have excess RMS after DPSS filtering (likely RFI), but not low or high power or a bad bandpass.
All Bad Antpols: 16e, 18e, 18n, 21e, 27n, 29e, 30e, 33e, 37n, 40n, 42e, 42n, 51e, 55e, 72n, 77n, 92e, 97n, 120n, 121e, 158n, 198e, 199e, 202n, 208e, 212n, 213e, 215n, 216e, 246e, 250e, 253n, 268n, 320e Node 1: Antpols (6 total): 16e, 18e, 18n, 27n, 29e, 30e Whole Ants (1 total): 18 Single Pols (4 total): 16e, 27n, 29e, 30e
Node 2: Antpols (2 total): 21e, 33e Whole Ants (0 total): Single Pols (2 total): 21e, 33e
Node 3: Antpols (3 total): 37n, 51e, 320e Whole Ants (0 total): Single Pols (3 total): 37n, 51e, 320e
Node 4: Antpols (5 total): 40n, 42e, 42n, 55e, 72n Whole Ants (1 total): 42 Single Pols (3 total): 40n, 55e, 72n
Node 6: Antpols (1 total): 77n Whole Ants (0 total): Single Pols (1 total): 77n
Node 8: Antpols (2 total): 120n, 121e Whole Ants (0 total): Single Pols (2 total): 120n, 121e
Node 10: Antpols (1 total): 92e Whole Ants (0 total): Single Pols (1 total): 92e
Node 11: Antpols (1 total): 97n Whole Ants (0 total): Single Pols (1 total): 97n
Node 12: Antpols (1 total): 158n Whole Ants (0 total): Single Pols (1 total): 158n
Node 16: Antpols (1 total): 213e Whole Ants (0 total): Single Pols (1 total): 213e
Node 17: Antpols (4 total): 198e, 199e, 215n, 216e Whole Ants (0 total): Single Pols (4 total): 198e, 199e, 215n, 216e
Node 18: Antpols (1 total): 202n Whole Ants (0 total): Single Pols (1 total): 202n
Node 20: Antpols (2 total): 208e, 246e Whole Ants (0 total): Single Pols (2 total): 208e, 246e
Node 21: Antpols (1 total): 212n Whole Ants (0 total): Single Pols (1 total): 212n
Node 22: Antpols (3 total): 250e, 253n, 268n Whole Ants (0 total): Single Pols (3 total): 250e, 253n, 268n
Redcal chi^2: (2 antpols across 2 antennas)
These antennas have been idenfied as not redundantly calibrating well, even after passing the above checks.
All Bad Antpols: 200n, 255n Node 18: Antpols (1 total): 200n Whole Ants (0 total): Single Pols (1 total): 200n Node 23: Antpols (1 total): 255n Whole Ants (0 total): Single Pols (1 total): 255n
Full-Day VisualizationsĀ¶
def classification_plot(col):
class_array = classification_array(col)
plt.figure(figsize=(12, len(ants) / 10), dpi=100)
plt.imshow(class_array.T, aspect='auto', interpolation='none', cmap='RdYlGn', vmin=0, vmax=2,
extent=[jds[0] - np.floor(jds[0]), jds[-1] - np.floor(jds[0]), len(ants), 0])
plt.xlabel(f'JD - {int(jds[0])}')
plt.yticks(ticks=np.arange(.5, len(ants)+.5), labels=[ant for ant in ants], fontsize=6)
plt.ylabel('Antenna Number (East First, Then North)')
plt.gca().tick_params(right=True, top=True, labelright=True, labeltop=True)
plt.tight_layout()
plt.title(f'{col}: Green is "good", Yellow is "suspect", Red is "bad"')
Figure 1: Per-File Overall Antenna Classification SummaryĀ¶
This "big green board" shows the overall (i.e. after redundant calibration) classification of antennas on a per-file basis. This is useful for looking at time-dependent effects across the array. While only antenna numbers are labeled, both polarizations are shown, first East then North going down, above and below the antenna's tick mark.
classification_plot('Antenna Class')
# compute flag fractions for all classifiers and antennas
frac_flagged = []
for col in class_cols[1:]:
class_array = np.vstack([t[col] for t in tables])
class_array[class_array == 'good'] = False
class_array[class_array == 'suspect'] = False
class_array[class_array == 'bad'] = True
frac_flagged.append(np.sum(class_array, axis=0))
def plot_flag_frac_all_classifiers():
ticks = []
for i, col in enumerate(list(class_cols[1:])):
ticks.append(f'{col} ({np.nanmean(np.array(frac_flagged).astype(float)[i]) / len(csv_files):.2%})')
plt.figure(figsize=(8, len(ants) / 10), dpi=100)
plt.imshow(np.array(frac_flagged).astype(float).T, aspect='auto', interpolation='none', cmap='viridis')
plt.xticks(ticks=np.arange(len(list(class_cols[1:]))), labels=ticks, rotation=-45, ha='left')
plt.yticks(ticks=np.arange(.5, len(ap_strs)+.5, 2), labels=[ant for ant in ants], fontsize=6)
plt.ylabel('Antenna Number (East First, Then North)')
plt.gca().tick_params(right=True, labelright=True,)
ax2 = plt.gca().twiny()
ax2.set_xticks(ticks=np.arange(len(list(class_cols[1:]))), labels=ticks, rotation=45, ha='left')
plt.colorbar(ax=plt.gca(), label=f'Number of Files Flagged Out of {len(csv_files)}', aspect=50)
plt.tight_layout()
Figure 2: Per-Classifier Antenna Flagging SummaryĀ¶
This plot shows the fraction of files flagged for each reason for each antenna. It's useful for seeing which problems are transitory and which ones are more common. Note that not all flags are independent and in particular redcal chi^2 takes an OR of other classifications as an input. Also note that only antenna numbers are labeled, both polarizations are shown, first East then North going down, above and below the antenna's tick mark.
plot_flag_frac_all_classifiers()
def array_class_plot():
fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
if len([ant for ant in hd.data_ants if ant < 320]) > 0:
plot_antclass(hd.antpos, overall_class, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False,
title=f'HERA Core: Overall Flagging Based on {overall_thresh:.1%} Daily Threshold')
if len([ant for ant in hd.data_ants if ant >= 320]) > 0:
plot_antclass(hd.antpos, overall_class, ax=axes[1], ants=[ant for ant in hd.data_ants if ant >= 320], radius=50, title='Outriggers')
Figure 3: Array Visualization of Overall Daily ClassificationĀ¶
Overall classification of antenna-polarizations shown on the array layout. If any antenna is marked bad for any reason more than the threshold (default 10%), it is marked bad here. Likewise, if any antenna is marked suspect for more than 10% of the night (but not bad), it's suspect here.
if SUM_FILE is not None: array_class_plot()
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
for repo in ['pyuvdata', 'hera_cal', 'hera_qm', 'hera_notebook_templates']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
pyuvdata: 3.1.3 hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e
hera_notebook_templates: 0.1.dev989+gee0995d