Antenna Classification Daily Summary¶

by Josh Dillon last updated June 19, 2023

This notebook parses and summarizes the output of the file_calibration notebook to produce a report on per-antenna malfunctions on a daily basis.

Quick links:

• Summary of Per Antenna Issues¶

• Figure 1: Per File Overall Antenna Classification Summary¶

• Figure 2: Per Classifier Antenna Flagging Summary¶

• Figure 3: Array Visualization of Overall Daily Classification¶

InĀ [1]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
import pandas as pd
import glob
import os
import matplotlib.pyplot as plt
from hera_cal import io, utils
from hera_qm import ant_class
from uvtools.plot import plot_antpos, plot_antclass
%matplotlib inline
from IPython.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'

Settings¶

InĀ [2]:
# Parse settings from environment
ANT_CLASS_FOLDER = os.environ.get("ANT_CLASS_FOLDER", "./")
SUM_FILE = os.environ.get("SUM_FILE", None)
# ANT_CLASS_FOLDER = "/mnt/sn1/2460330"
# SUM_FILE = "/mnt/sn1/2460330/zen.2460330.25463.sum.uvh5"
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"

for param in ['ANT_CLASS_FOLDER', 'SUM_FILE', 'OC_SKIP_OUTRIGGERS']:
    print(f"{param} = '{eval(param)}'")
ANT_CLASS_FOLDER = '/mnt/sn1/data1/2460769'
SUM_FILE = '/mnt/sn1/data1/2460769/zen.2460769.38656.sum.uvh5'
OC_SKIP_OUTRIGGERS = 'True'
InĀ [3]:
if SUM_FILE is not None:
    from astropy.time import Time, TimeDelta
    utc = Time(float(SUM_FILE.split('zen.')[-1].split('.sum.uvh5')[0]), format='jd').datetime
    print(f'Date: {utc.month}-{utc.day}-{utc.year}')
Date: 4-3-2025
InĀ [4]:
# set thresholds for fraction of the day
overall_thresh = .1
all_zero_thresh = .1
eo_zeros_thresh = .1
xengine_diff_thresh = .1
cross_pol_thresh = .5
bad_fem_thresh = .1
high_power_thresh = .1
low_power_thresh = .1
low_corr_thresh = .1
bad_shape_thresh = .5
excess_rfi_thresh = .1
chisq_thresh = .25

Load classifications and other metadata¶

InĀ [5]:
# Load csvs
csv_files = sorted(glob.glob(os.path.join(ANT_CLASS_FOLDER, '*.ant_class.csv')))
jds = [float(f.split('/')[-1].split('zen.')[-1].split('.sum')[0]) for f in csv_files]
tables = [pd.read_csv(f).dropna(axis=0, how='all') for f in csv_files]
table_cols = tables[0].columns[1::2]
class_cols = tables[0].columns[2::2]
print(f'Found {len(csv_files)} csv files starting with {csv_files[0]}')
Found 1551 csv files starting with /mnt/sn1/data1/2460769/zen.2460769.21073.sum.ant_class.csv
InĀ [6]:
# parse ant_strings
ap_strs = np.array(tables[0]['Antenna'])
ants = sorted(set(int(a[:-1]) for a in ap_strs))
translator = ''.maketrans('e', 'n') | ''.maketrans('n', 'e')
InĀ [7]:
# get node numbers
node_dict = {ant: 'Unknown' for ant in ants}
try:
    from hera_mc import cm_hookup
    hookup = cm_hookup.get_hookup('default')
    for ant_name in hookup:
        ant = int("".join(filter(str.isdigit, ant_name)))
        if ant in node_dict:
            if hookup[ant_name].get_part_from_type('node')['E<ground'] is not None:
                node_dict[ant] = int(hookup[ant_name].get_part_from_type('node')['E<ground'][1:])
except:
    pass
nodes = sorted(set(node_dict.values()))
InĀ [8]:
def classification_array(col):
    class_array = np.vstack([t[col] for t in tables])
    class_array[class_array == 'good'] = 1.7
    class_array[class_array == 'suspect'] = 1
    class_array[class_array == 'bad'] = 0
    return class_array.astype(float)
InĀ [9]:
if SUM_FILE is not None:
    hd = io.HERADataFastReader(SUM_FILE)
    ap_tuples = [(int(ap[:-1]), {'e': 'Jee', 'n': 'Jnn'}[ap[-1]]) for ap in ap_strs]
    bad_bools = np.mean(classification_array('Antenna Class') == 0, axis=0) > overall_thresh
    bad_aps = [ap_tuples[i] for i in np.arange(len(ap_tuples))[bad_bools]]
    suspect_bools = np.mean(classification_array('Antenna Class') == 1, axis=0) > overall_thresh
    suspect_aps = [ap_tuples[i] for i in np.arange(len(ap_tuples))[suspect_bools] if ap_tuples[i] not in bad_aps]
    good_aps = [ap for ap in ap_tuples if ap not in bad_aps and ap not in suspect_aps]
    overall_class = ant_class.AntennaClassification(bad=bad_aps, suspect=suspect_aps, good=good_aps)
    autos, _, _ = hd.read(bls=[bl for bl in hd.bls if utils.split_bl(bl)[0] == utils.split_bl(bl)[1]], read_flags=False, read_nsamples=False)
    avg_unflagged_auto = {}
    for pol in ['ee', 'nn']:
        unflagged_autos = [autos[bl] for bl in autos if bl[2] == pol and overall_class[utils.split_bl(bl)[0]] != 'bad']
        if len(unflagged_autos) > 0:
            avg_unflagged_auto[pol] = np.mean(unflagged_autos, axis=(0, 1))
        else:
            avg_unflagged_auto[pol] = np.zeros(len(hd.freqs), dtype=complex)

Figure out and summarize per-antenna issues¶

InĀ [10]:
def print_issue_summary(bad_ant_strs, title, notes='', plot=False):
    '''Print report for list of bad antenna polarizations strings'''
    unique_bad_antnums = [int(ap[:-1]) for ap in bad_ant_strs]
    display(HTML(f'<h2>{title}: ({len(bad_ant_strs)} antpols across {len(set([ba[:-1] for ba in bad_ant_strs]))} antennas)</h2>'))
    if len(notes) > 0:
        display(HTML(f'<h4>{notes}</h4>'))
    if len(bad_ant_strs) > 0:
        print(f'All Bad Antpols: {", ".join(bad_ant_strs)}\n')
    for node in nodes:
        if np.any([node == node_dict[a] for a in unique_bad_antnums]):
            aps = [ap for ap in bad_ant_strs if node_dict[int(ap[:-1])] == node]
            whole_ants = [str(wa) for wa in set([int(ap[:-1]) for ap in aps if ap.translate(translator) in bad_ant_strs])]
            single_pols =  [ap for ap in aps if ap.translate(translator) not in bad_ant_strs]
            print(f'Node {node}:')
            print(f'\tAntpols ({len(aps)} total): {", ".join(aps)}')
            print(f'\tWhole Ants ({len(whole_ants)} total): {", ".join(whole_ants)}')
            print(f'\tSingle Pols ({len(single_pols)} total): {", ".join(single_pols)}')
            if plot and SUM_FILE is not None:
                fig, axes = plt.subplots(1, 2, figsize=(12,4), dpi=70, sharey=True, gridspec_kw={'wspace': 0})
                for ax, pol in zip(axes, ['ee', 'nn']):                    
                    ax.semilogy(autos.freqs / 1e6, avg_unflagged_auto[pol], 'k--', label='Average\nUnflagged\nAuto')
                    for ap in aps:
                        ant = int(ap[:-1]), utils.comply_pol(ap[-1])
                        auto_bl = utils.join_bl(ant, ant)
                        if auto_bl[2] == pol:
                            ax.semilogy(autos.freqs / 1e6, np.mean(autos[auto_bl], axis=0), label=ap)
                    ax.legend()
                    ax.set_xlim([40, 299])
                    ax.set_title(f'{title} on Node {node} ({pol}-antennas)')
                    ax.set_xlabel('Frequency (MHz)')
                axes[0].set_ylabel('Single File Raw Autocorrelation')
                plt.tight_layout()
                plt.show() 
InĀ [11]:
# precompute various helpful quantities
all_slopes = np.vstack([t['Autocorr Slope'] for t in tables])
median_slope = np.median(all_slopes)
bad_slopes = np.vstack([t['Autocorr Slope Class'] for t in tables]) == 'bad'
suspect_slopes = np.vstack([t['Autocorr Slope Class'] for t in tables]) == 'suspect'
bad_shapes = np.vstack([t['Autocorr Shape Class'] for t in tables]) == 'bad'
suspect_shapes = np.vstack([t['Autocorr Shape Class'] for t in tables]) == 'suspect'
all_powers = np.vstack([t['Autocorr Power'] for t in tables])
median_power = np.median(all_powers)
bad_powers = np.vstack([t['Autocorr Power Class'] for t in tables]) == 'bad'
suspect_powers = np.vstack([t['Autocorr Power Class'] for t in tables]) == 'suspect'
bad_rfi = np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'bad'
suspect_rfi = np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'suspect'
InĀ [12]:
# find all zeros
all_zeros_strs = ap_strs[np.mean(np.vstack([t['Dead? Class'] for t in tables]) == 'bad', axis=0) > all_zero_thresh]
InĀ [13]:
# find even/odd zeros
eo_zeros_strs = ap_strs[np.mean(np.vstack([t['Even/Odd Zeros Class'] for t in tables]) == 'bad', axis=0) > eo_zeros_thresh]
eo_zeros_strs = [ap for ap in eo_zeros_strs if ap not in all_zeros_strs] 
InĀ [14]:
# find cross-polarized antennas
cross_pol_strs = ap_strs[np.mean(np.vstack([t['Cross-Polarized Class'] for t in tables]) == 'bad', axis=0) > cross_pol_thresh]
cross_pol_strs = [ap for ap in cross_pol_strs if ap not in all_zeros_strs] 
InĀ [15]:
# find FEM power issues: must be low power, high slope, and bad or suspect in power, slope, rfi, and shape
fem_off_prod = (bad_powers + .5 * suspect_powers) * (bad_slopes + .5 * suspect_slopes)
fem_off_prod *= (bad_rfi + .5 * suspect_rfi) * (bad_shapes + .5 * suspect_shapes)
fem_off_strs = ap_strs[np.mean(fem_off_prod * (all_powers < median_power) * (all_slopes > median_slope), axis=0) > .1]
InĀ [16]:
# find high power issues
high_power_strs = ap_strs[np.mean(bad_powers & (all_powers > median_power), axis=0) > high_power_thresh]
InĀ [17]:
# find other low power issues
low_power_strs = ap_strs[np.mean(bad_powers & (all_powers < median_power), axis=0) > low_power_thresh]
low_power_strs = [ap for ap in low_power_strs if ap not in all_zeros_strs and ap not in fem_off_strs] 
InĀ [18]:
# find low correlation (but not low power)
low_corr_strs = ap_strs[np.mean(np.vstack([t['Low Correlation Class'] for t in tables]) == 'bad', axis=0) > low_corr_thresh]
low_corr_strs = [ap for ap in low_corr_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) | set(fem_off_strs))] 
InĀ [19]:
# find bad bandpasses
bad_bandpass_strs = ap_strs[np.mean(bad_shapes, axis=0) > bad_shape_thresh]
bad_bandpass_strs = [ap for ap in bad_bandpass_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs))]
InĀ [20]:
# find antennas with excess RFI
excess_rfi_strs = ap_strs[np.mean(np.vstack([t['Auto RFI RMS Class'] for t in tables]) == 'bad', axis=0) > excess_rfi_thresh]
excess_rfi_strs = [ap for ap in excess_rfi_strs if ap not in (set(low_power_strs) | set(all_zeros_strs) |  set(fem_off_strs) |
                                                              set(bad_bandpass_strs) | set(high_power_strs))] 
InĀ [21]:
# find bad x-engine diffs
xengine_diff_strs = ap_strs[np.mean(np.vstack([t['Bad Diff X-Engines Class'] for t in tables]) == 'bad', axis=0) > xengine_diff_thresh]
xengine_diff_strs = [ap for ap in xengine_diff_strs if ap not in (set(bad_bandpass_strs) | set(low_power_strs) | set(excess_rfi_strs) | set(low_corr_strs) |
                                                                  set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs) | set(eo_zeros_strs))]
InĀ [22]:
# find antennas with high redcal chi^2
chisq_strs = ap_strs[np.mean(np.vstack([t['Redcal chi^2 Class'] for t in tables]) == 'bad', axis=0) > chisq_thresh]
chisq_strs = [ap for ap in chisq_strs if ap not in (set(bad_bandpass_strs) | set(low_power_strs) | set(excess_rfi_strs) | set(low_corr_strs) |
                                                    set(all_zeros_strs) | set(high_power_strs) | set(fem_off_strs) | set(eo_zeros_strs) | set(xengine_diff_strs))]
if OC_SKIP_OUTRIGGERS:
    chisq_strs = [ap for ap in chisq_strs if int(ap[:-1]) < 320]
InĀ [23]:
# collect all results
to_print = [(all_zeros_strs, 'All-Zeros', 'These antennas have visibilities that are more than half zeros.'),
            (eo_zeros_strs, 'Excess Zeros in Either Even or Odd Spectra', 
             'These antennas are showing evidence of packet loss or X-engine failure.', True),
            (xengine_diff_strs, 'Excess Power in X-Engine Diffs', 
             'These antennas are showing evidence of mis-written packets in either the evens or the odds.', True),            
            (cross_pol_strs, 'Cross-Polarized', 'These antennas have their east and north cables swapped.'),
            (fem_off_strs, 'Likely FEM Power Issue', 'These antennas have low power and anomolously high slopes.', True),
            (high_power_strs, 'High Power', 'These antennas have high median power.', True),
            (low_power_strs, 'Other Low Power Issues', 'These antennas have low power, but are not all-zeros and not FEM off.', True),
            (low_corr_strs, 'Low Correlation, But Not Low Power', 'These antennas are low correlation, but their autocorrelation power levels look OK.'),
            (bad_bandpass_strs, 'Bad Bandpass Shapes, But Not Bad Power', 
             'These antennas have unusual bandpass shapes, but are not all-zeros, high power, low power, or FEM off.', True),
            (excess_rfi_strs, 'Excess RFI', 'These antennas have excess RMS after DPSS filtering (likely RFI), but not low or high power or a bad bandpass.', True),
            (chisq_strs, 'Redcal chi^2', 'These antennas have been idenfied as not redundantly calibrating well, even after passing the above checks.')]
InĀ [24]:
def print_high_level_summary():
    for tp in sorted(to_print, key=lambda x: len(x[0]), reverse=True):
        print(f'{len(tp[0])} antpols (on {len(set([ap[:-1] for ap in tp[0]]))} antennas) frequently flagged for {tp[1]}.')
        
def print_all_issue_summaries():
    for tp in to_print:
        print_issue_summary(*tp)

Summary of Per-Antenna Issues¶

InĀ [25]:
print_high_level_summary()
347 antpols (on 219 antennas) frequently flagged for Excess Power in X-Engine Diffs.
52 antpols (on 45 antennas) frequently flagged for Excess RFI.
51 antpols (on 48 antennas) frequently flagged for Redcal chi^2.
30 antpols (on 27 antennas) frequently flagged for Likely FEM Power Issue.
13 antpols (on 11 antennas) frequently flagged for Low Correlation, But Not Low Power.
12 antpols (on 6 antennas) frequently flagged for All-Zeros.
11 antpols (on 9 antennas) frequently flagged for Other Low Power Issues.
9 antpols (on 9 antennas) frequently flagged for Bad Bandpass Shapes, But Not Bad Power.
5 antpols (on 4 antennas) frequently flagged for High Power.
0 antpols (on 0 antennas) frequently flagged for Excess Zeros in Either Even or Odd Spectra.
0 antpols (on 0 antennas) frequently flagged for Cross-Polarized.
InĀ [26]:
print_all_issue_summaries()

All-Zeros: (12 antpols across 6 antennas)

These antennas have visibilities that are more than half zeros.

All Bad Antpols: 42e, 42n, 54e, 54n, 72e, 72n, 212e, 212n, 231e, 231n, 232e, 232n

Node 4:
	Antpols (6 total): 42e, 42n, 54e, 54n, 72e, 72n
	Whole Ants (3 total): 72, 42, 54
	Single Pols (0 total): 
Node 21:
	Antpols (6 total): 212e, 212n, 231e, 231n, 232e, 232n
	Whole Ants (3 total): 232, 212, 231
	Single Pols (0 total): 

Excess Zeros in Either Even or Odd Spectra: (0 antpols across 0 antennas)

These antennas are showing evidence of packet loss or X-engine failure.

Excess Power in X-Engine Diffs: (347 antpols across 219 antennas)

These antennas are showing evidence of mis-written packets in either the evens or the odds.

All Bad Antpols: 3e, 3n, 4n, 5e, 5n, 7n, 9e, 9n, 10e, 15e, 15n, 16n, 17e, 19e, 19n, 20e, 21n, 29e, 30n, 31e, 32e, 33e, 36e, 36n, 37e, 38e, 38n, 40e, 41e, 41n, 43e, 43n, 44n, 45e, 46n, 47e, 47n, 48n, 49e, 49n, 50e, 50n, 51n, 52e, 52n, 53e, 53n, 55n, 56e, 56n, 57e, 57n, 58e, 58n, 59e, 60e, 61e, 61n, 62e, 63e, 64e, 64n, 65n, 66e, 67e, 68e, 68n, 69e, 69n, 70e, 70n, 71e, 73e, 77n, 79e, 79n, 80e, 80n, 81e, 82e, 83e, 83n, 84e, 84n, 85e, 85n, 87e, 88e, 88n, 89e, 89n, 91e, 91n, 92e, 92n, 93e, 93n, 94e, 94n, 95e, 96e, 96n, 97e, 98e, 98n, 99e, 100n, 101e, 101n, 102e, 103n, 105n, 106n, 107n, 108e, 108n, 109e, 110e, 110n, 111e, 111n, 112n, 113e, 113n, 114e, 114n, 115n, 116e, 116n, 117n, 118e, 118n, 119e, 119n, 122n, 123e, 123n, 124e, 124n, 125e, 126e, 126n, 127e, 127n, 128e, 128n, 129e, 129n, 130e, 130n, 131e, 131n, 132e, 132n, 133e, 133n, 134e, 134n, 135n, 136e, 137e, 137n, 138e, 138n, 140e, 140n, 141e, 141n, 142e, 142n, 144n, 145e, 145n, 146e, 146n, 147e, 147n, 148e, 150e, 150n, 151n, 152e, 152n, 153e, 153n, 154e, 154n, 156n, 157e, 157n, 158e, 158n, 159e, 159n, 160e, 161e, 162e, 162n, 163e, 163n, 165e, 165n, 166e, 166n, 167e, 168e, 168n, 169e, 169n, 170n, 171e, 172e, 172n, 173e, 173n, 174e, 175e, 175n, 177e, 177n, 178e, 178n, 179e, 179n, 180e, 181e, 181n, 182e, 182n, 183e, 183n, 184e, 184n, 185e, 185n, 186e, 186n, 187e, 188e, 190e, 190n, 191e, 191n, 192e, 192n, 193e, 193n, 194e, 194n, 195e, 195n, 196e, 196n, 197e, 197n, 198n, 201e, 201n, 203n, 204e, 204n, 205e, 205n, 207n, 208e, 208n, 209e, 209n, 210e, 210n, 211n, 213n, 217n, 218e, 219e, 219n, 220e, 220n, 221e, 221n, 222e, 223e, 223n, 224e, 224n, 225e, 225n, 226e, 226n, 228e, 228n, 229e, 229n, 233e, 233n, 234n, 235e, 235n, 237e, 237n, 238e, 239n, 240e, 240n, 241e, 241n, 243n, 244n, 245n, 246n, 250n, 251n, 252e, 252n, 253e, 256e, 256n, 261e, 267e, 267n, 269n, 270e, 272e, 281e, 281n, 282e, 283e, 283n, 285e, 285n, 295e, 295n, 320n, 322e, 322n, 323e, 325e, 325n, 327e, 327n, 328n, 331n, 333n, 336e, 336n, 340e, 340n

Node 1:
	Antpols (11 total): 3e, 3n, 4n, 5e, 5n, 15e, 15n, 16n, 17e, 29e, 30n
	Whole Ants (3 total): 3, 5, 15
	Single Pols (5 total): 4n, 16n, 17e, 29e, 30n
Casting complex values to real discards the imaginary part
Casting complex values to real discards the imaginary part
No description has been provided for this image
Node 2:
	Antpols (12 total): 7n, 9e, 9n, 10e, 19e, 19n, 20e, 21n, 31e, 32e, 33e, 323e
	Whole Ants (2 total): 9, 19
	Single Pols (8 total): 7n, 10e, 20e, 21n, 31e, 32e, 33e, 323e
No description has been provided for this image
Node 3:
	Antpols (18 total): 36e, 36n, 37e, 38e, 38n, 50e, 50n, 51n, 52e, 52n, 53e, 53n, 65n, 66e, 67e, 68e, 68n, 320n
	Whole Ants (6 total): 36, 68, 38, 50, 52, 53
	Single Pols (6 total): 37e, 51n, 65n, 66e, 67e, 320n
No description has been provided for this image
Node 4:
	Antpols (13 total): 40e, 41e, 41n, 55n, 56e, 56n, 57e, 57n, 69e, 69n, 70e, 70n, 71e
	Whole Ants (5 total): 69, 70, 41, 56, 57
	Single Pols (3 total): 40e, 55n, 71e
No description has been provided for this image
Node 5:
	Antpols (12 total): 43e, 43n, 44n, 45e, 46n, 58e, 58n, 59e, 60e, 73e, 322e, 322n
	Whole Ants (3 total): 58, 43, 322
	Single Pols (6 total): 44n, 45e, 46n, 59e, 60e, 73e
No description has been provided for this image
Node 6:
	Antpols (12 total): 47e, 47n, 48n, 49e, 49n, 61e, 61n, 62e, 63e, 64e, 64n, 77n
	Whole Ants (4 total): 64, 49, 61, 47
	Single Pols (4 total): 48n, 62e, 63e, 77n
No description has been provided for this image
Node 7:
	Antpols (19 total): 81e, 82e, 83e, 83n, 98e, 98n, 99e, 100n, 116e, 116n, 117n, 118e, 118n, 119e, 119n, 137e, 137n, 138e, 138n
	Whole Ants (7 total): 98, 137, 138, 83, 116, 118, 119
	Single Pols (5 total): 81e, 82e, 99e, 100n, 117n
No description has been provided for this image
Node 8:
	Antpols (12 total): 84e, 84n, 85e, 85n, 87e, 101e, 101n, 102e, 103n, 122n, 123e, 123n
	Whole Ants (4 total): 101, 123, 84, 85
	Single Pols (4 total): 87e, 102e, 103n, 122n
No description has been provided for this image
Node 9:
	Antpols (18 total): 88e, 88n, 89e, 89n, 91e, 91n, 105n, 106n, 107n, 108e, 108n, 124e, 124n, 125e, 126e, 126n, 325e, 325n
	Whole Ants (7 total): 325, 108, 88, 89, 91, 124, 126
	Single Pols (4 total): 105n, 106n, 107n, 125e
No description has been provided for this image
Node 10:
	Antpols (21 total): 92e, 92n, 93e, 93n, 94e, 94n, 109e, 110e, 110n, 111e, 111n, 112n, 127e, 127n, 128e, 128n, 129e, 129n, 130e, 130n, 328n
	Whole Ants (9 total): 128, 129, 130, 110, 111, 92, 93, 94, 127
	Single Pols (3 total): 109e, 112n, 328n
No description has been provided for this image
Node 11:
	Antpols (21 total): 79e, 79n, 80e, 80n, 95e, 96e, 96n, 97e, 113e, 113n, 114e, 114n, 115n, 131e, 131n, 132e, 132n, 133e, 133n, 134e, 134n
	Whole Ants (9 total): 96, 131, 132, 133, 134, 79, 80, 113, 114
	Single Pols (3 total): 95e, 97e, 115n
No description has been provided for this image
Node 12:
	Antpols (14 total): 135n, 136e, 156n, 157e, 157n, 158e, 158n, 177e, 177n, 178e, 178n, 179e, 179n, 333n
	Whole Ants (5 total): 177, 178, 179, 157, 158
	Single Pols (4 total): 135n, 136e, 156n, 333n
No description has been provided for this image
Node 13:
	Antpols (19 total): 140e, 140n, 141e, 141n, 142e, 142n, 159e, 159n, 160e, 161e, 162e, 162n, 180e, 181e, 181n, 182e, 182n, 183e, 183n
	Whole Ants (8 total): 162, 140, 141, 142, 181, 182, 183, 159
	Single Pols (3 total): 160e, 161e, 180e
No description has been provided for this image
Node 14:
	Antpols (18 total): 144n, 145e, 145n, 146e, 146n, 163e, 163n, 165e, 165n, 166e, 166n, 184e, 184n, 185e, 185n, 186e, 186n, 187e
	Whole Ants (8 total): 163, 165, 166, 145, 146, 184, 185, 186
	Single Pols (2 total): 144n, 187e
No description has been provided for this image
Node 15:
	Antpols (16 total): 147e, 147n, 148e, 150e, 150n, 167e, 168e, 168n, 169e, 169n, 170n, 188e, 190e, 190n, 191e, 191n
	Whole Ants (6 total): 168, 169, 147, 150, 190, 191
	Single Pols (4 total): 148e, 167e, 170n, 188e
No description has been provided for this image
Node 16:
	Antpols (20 total): 151n, 152e, 152n, 153e, 153n, 154e, 154n, 171e, 172e, 172n, 173e, 173n, 174e, 192e, 192n, 193e, 193n, 194e, 194n, 213n
	Whole Ants (8 total): 192, 193, 194, 172, 173, 152, 153, 154
	Single Pols (4 total): 151n, 171e, 174e, 213n
No description has been provided for this image
Node 17:
	Antpols (12 total): 196e, 196n, 197e, 197n, 198n, 217n, 218e, 233e, 233n, 234n, 235e, 235n
	Whole Ants (4 total): 233, 235, 196, 197
	Single Pols (4 total): 198n, 217n, 218e, 234n
No description has been provided for this image
Node 18:
	Antpols (14 total): 201e, 201n, 203n, 219e, 219n, 220e, 220n, 221e, 221n, 222e, 237e, 237n, 238e, 239n
	Whole Ants (5 total): 201, 237, 219, 220, 221
	Single Pols (4 total): 203n, 222e, 238e, 239n
No description has been provided for this image
Node 19:
	Antpols (18 total): 204e, 204n, 205e, 205n, 207n, 223e, 223n, 224e, 224n, 225e, 225n, 226e, 226n, 240e, 240n, 241e, 241n, 243n
	Whole Ants (8 total): 224, 225, 226, 204, 205, 240, 241, 223
	Single Pols (2 total): 207n, 243n
No description has been provided for this image
Node 20:
	Antpols (15 total): 208e, 208n, 209e, 209n, 210e, 210n, 211n, 228e, 228n, 229e, 229n, 244n, 245n, 246n, 261e
	Whole Ants (5 total): 228, 229, 208, 209, 210
	Single Pols (5 total): 211n, 244n, 245n, 246n, 261e
No description has been provided for this image
Node 21:
	Antpols (11 total): 175e, 175n, 195e, 195n, 327e, 327n, 331n, 336e, 336n, 340e, 340n
	Whole Ants (5 total): 195, 327, 175, 336, 340
	Single Pols (1 total): 331n
No description has been provided for this image
Node 22:
	Antpols (15 total): 250n, 251n, 252e, 252n, 253e, 267e, 267n, 269n, 281e, 281n, 282e, 283e, 283n, 295e, 295n
	Whole Ants (5 total): 295, 267, 281, 283, 252
	Single Pols (5 total): 250n, 251n, 253e, 269n, 282e
No description has been provided for this image
Node 23:
	Antpols (6 total): 256e, 256n, 270e, 272e, 285e, 285n
	Whole Ants (2 total): 256, 285
	Single Pols (2 total): 270e, 272e
No description has been provided for this image

Cross-Polarized: (0 antpols across 0 antennas)

These antennas have their east and north cables swapped.

Likely FEM Power Issue: (30 antpols across 27 antennas)

These antennas have low power and anomolously high slopes.

All Bad Antpols: 4e, 30e, 34e, 44e, 75n, 104n, 105e, 109n, 112e, 115e, 121e, 135e, 143n, 149e, 167n, 170e, 189n, 200e, 216e, 216n, 238n, 239e, 244e, 246e, 255e, 268e, 268n, 329n, 332e, 332n

Node 1:
	Antpols (2 total): 4e, 30e
	Whole Ants (0 total): 
	Single Pols (2 total): 4e, 30e
No description has been provided for this image
Node 5:
	Antpols (2 total): 44e, 75n
	Whole Ants (0 total): 
	Single Pols (2 total): 44e, 75n
No description has been provided for this image
Node 6:
	Antpols (1 total): 34e
	Whole Ants (0 total): 
	Single Pols (1 total): 34e
No description has been provided for this image
Node 8:
	Antpols (2 total): 104n, 121e
	Whole Ants (0 total): 
	Single Pols (2 total): 104n, 121e
No description has been provided for this image
Node 9:
	Antpols (1 total): 105e
	Whole Ants (0 total): 
	Single Pols (1 total): 105e
No description has been provided for this image
Node 10:
	Antpols (2 total): 109n, 112e
	Whole Ants (0 total): 
	Single Pols (2 total): 109n, 112e
No description has been provided for this image
Node 11:
	Antpols (1 total): 115e
	Whole Ants (0 total): 
	Single Pols (1 total): 115e
No description has been provided for this image
Node 12:
	Antpols (2 total): 135e, 329n
	Whole Ants (0 total): 
	Single Pols (2 total): 135e, 329n
No description has been provided for this image
Node 14:
	Antpols (1 total): 143n
	Whole Ants (0 total): 
	Single Pols (1 total): 143n
Data has no positive values, and therefore cannot be log-scaled.
No description has been provided for this image
Node 15:
	Antpols (4 total): 149e, 167n, 170e, 189n
	Whole Ants (0 total): 
	Single Pols (4 total): 149e, 167n, 170e, 189n
No description has been provided for this image
Node 17:
	Antpols (2 total): 216e, 216n
	Whole Ants (1 total): 216
	Single Pols (0 total): 
No description has been provided for this image
Node 18:
	Antpols (3 total): 200e, 238n, 239e
	Whole Ants (0 total): 
	Single Pols (3 total): 200e, 238n, 239e
No description has been provided for this image
Node 20:
	Antpols (2 total): 244e, 246e
	Whole Ants (0 total): 
	Single Pols (2 total): 244e, 246e
No description has been provided for this image
Node 21:
	Antpols (2 total): 332e, 332n
	Whole Ants (1 total): 332
	Single Pols (0 total): 
No description has been provided for this image
Node 22:
	Antpols (2 total): 268e, 268n
	Whole Ants (1 total): 268
	Single Pols (0 total): 
No description has been provided for this image
Node 23:
	Antpols (1 total): 255e
	Whole Ants (0 total): 
	Single Pols (1 total): 255e
No description has been provided for this image

High Power: (5 antpols across 4 antennas)

These antennas have high median power.

All Bad Antpols: 8e, 8n, 31n, 189e, 199e

Node 2:
	Antpols (3 total): 8e, 8n, 31n
	Whole Ants (1 total): 8
	Single Pols (1 total): 31n
No description has been provided for this image
Node 15:
	Antpols (1 total): 189e
	Whole Ants (0 total): 
	Single Pols (1 total): 189e
No description has been provided for this image
Node 17:
	Antpols (1 total): 199e
	Whole Ants (0 total): 
	Single Pols (1 total): 199e
No description has been provided for this image

Other Low Power Issues: (11 antpols across 9 antennas)

These antennas have low power, but are not all-zeros and not FEM off.

All Bad Antpols: 10n, 81n, 82n, 99n, 176n, 218n, 251e, 262e, 262n, 266e, 266n

Node 2:
	Antpols (1 total): 10n
	Whole Ants (0 total): 
	Single Pols (1 total): 10n
No description has been provided for this image
Node 7:
	Antpols (3 total): 81n, 82n, 99n
	Whole Ants (0 total): 
	Single Pols (3 total): 81n, 82n, 99n
No description has been provided for this image
Node 12:
	Antpols (1 total): 176n
	Whole Ants (0 total): 
	Single Pols (1 total): 176n
No description has been provided for this image
Node 17:
	Antpols (1 total): 218n
	Whole Ants (0 total): 
	Single Pols (1 total): 218n
No description has been provided for this image
Node 20:
	Antpols (2 total): 262e, 262n
	Whole Ants (1 total): 262
	Single Pols (0 total): 
No description has been provided for this image
Node 22:
	Antpols (3 total): 251e, 266e, 266n
	Whole Ants (1 total): 266
	Single Pols (1 total): 251e
No description has been provided for this image

Low Correlation, But Not Low Power: (13 antpols across 11 antennas)

These antennas are low correlation, but their autocorrelation power levels look OK.

All Bad Antpols: 27e, 28e, 28n, 171n, 200n, 214n, 255n, 321e, 326e, 326n, 328e, 329e, 331e

Node 1:
	Antpols (3 total): 27e, 28e, 28n
	Whole Ants (1 total): 28
	Single Pols (1 total): 27e
Node 2:
	Antpols (1 total): 321e
	Whole Ants (0 total): 
	Single Pols (1 total): 321e
Node 10:
	Antpols (1 total): 328e
	Whole Ants (0 total): 
	Single Pols (1 total): 328e
Node 12:
	Antpols (1 total): 329e
	Whole Ants (0 total): 
	Single Pols (1 total): 329e
Node 16:
	Antpols (1 total): 171n
	Whole Ants (0 total): 
	Single Pols (1 total): 171n
Node 18:
	Antpols (1 total): 200n
	Whole Ants (0 total): 
	Single Pols (1 total): 200n
Node 21:
	Antpols (4 total): 214n, 326e, 326n, 331e
	Whole Ants (1 total): 326
	Single Pols (2 total): 214n, 331e
Node 23:
	Antpols (1 total): 255n
	Whole Ants (0 total): 
	Single Pols (1 total): 255n

Bad Bandpass Shapes, But Not Bad Power: (9 antpols across 9 antennas)

These antennas have unusual bandpass shapes, but are not all-zeros, high power, low power, or FEM off.

All Bad Antpols: 27e, 28e, 32n, 46e, 78e, 120e, 161n, 180n, 199n

Node 1:
	Antpols (2 total): 27e, 28e
	Whole Ants (0 total): 
	Single Pols (2 total): 27e, 28e
No description has been provided for this image
Node 2:
	Antpols (1 total): 32n
	Whole Ants (0 total): 
	Single Pols (1 total): 32n
No description has been provided for this image
Node 5:
	Antpols (1 total): 46e
	Whole Ants (0 total): 
	Single Pols (1 total): 46e
No description has been provided for this image
Node 6:
	Antpols (1 total): 78e
	Whole Ants (0 total): 
	Single Pols (1 total): 78e
No description has been provided for this image
Node 8:
	Antpols (1 total): 120e
	Whole Ants (0 total): 
	Single Pols (1 total): 120e
No description has been provided for this image
Node 13:
	Antpols (2 total): 161n, 180n
	Whole Ants (0 total): 
	Single Pols (2 total): 161n, 180n
No description has been provided for this image
Node 17:
	Antpols (1 total): 199n
	Whole Ants (0 total): 
	Single Pols (1 total): 199n
No description has been provided for this image

Excess RFI: (52 antpols across 45 antennas)

These antennas have excess RMS after DPSS filtering (likely RFI), but not low or high power or a bad bandpass.

All Bad Antpols: 7e, 16e, 18e, 18n, 20n, 21e, 22e, 22n, 27n, 29n, 33n, 34n, 37n, 40n, 51e, 55e, 60n, 67n, 71n, 86e, 86n, 90e, 97n, 100e, 102n, 107e, 117e, 120n, 121n, 122e, 125n, 155e, 155n, 164e, 187n, 202n, 206n, 213e, 214e, 214n, 215e, 215n, 227e, 227n, 250e, 253n, 255n, 261n, 320e, 321n, 326e, 333e

Node 1:
	Antpols (5 total): 16e, 18e, 18n, 27n, 29n
	Whole Ants (1 total): 18
	Single Pols (3 total): 16e, 27n, 29n
No description has been provided for this image
Node 2:
	Antpols (5 total): 7e, 20n, 21e, 33n, 321n
	Whole Ants (0 total): 
	Single Pols (5 total): 7e, 20n, 21e, 33n, 321n
No description has been provided for this image
Node 3:
	Antpols (4 total): 37n, 51e, 67n, 320e
	Whole Ants (0 total): 
	Single Pols (4 total): 37n, 51e, 67n, 320e
No description has been provided for this image
Node 4:
	Antpols (3 total): 40n, 55e, 71n
	Whole Ants (0 total): 
	Single Pols (3 total): 40n, 55e, 71n
No description has been provided for this image
Node 5:
	Antpols (1 total): 60n
	Whole Ants (0 total): 
	Single Pols (1 total): 60n
No description has been provided for this image
Node 6:
	Antpols (3 total): 22e, 22n, 34n
	Whole Ants (1 total): 22
	Single Pols (1 total): 34n
No description has been provided for this image
Node 7:
	Antpols (2 total): 100e, 117e
	Whole Ants (0 total): 
	Single Pols (2 total): 100e, 117e
No description has been provided for this image
Node 8:
	Antpols (6 total): 86e, 86n, 102n, 120n, 121n, 122e
	Whole Ants (1 total): 86
	Single Pols (4 total): 102n, 120n, 121n, 122e
No description has been provided for this image
Node 9:
	Antpols (3 total): 90e, 107e, 125n
	Whole Ants (0 total): 
	Single Pols (3 total): 90e, 107e, 125n
No description has been provided for this image
Node 11:
	Antpols (1 total): 97n
	Whole Ants (0 total): 
	Single Pols (1 total): 97n
No description has been provided for this image
Node 12:
	Antpols (3 total): 155e, 155n, 333e
	Whole Ants (1 total): 155
	Single Pols (1 total): 333e
No description has been provided for this image
Node 14:
	Antpols (2 total): 164e, 187n
	Whole Ants (0 total): 
	Single Pols (2 total): 164e, 187n
No description has been provided for this image
Node 16:
	Antpols (1 total): 213e
	Whole Ants (0 total): 
	Single Pols (1 total): 213e
No description has been provided for this image
Node 17:
	Antpols (2 total): 215e, 215n
	Whole Ants (1 total): 215
	Single Pols (0 total): 
No description has been provided for this image
Node 18:
	Antpols (1 total): 202n
	Whole Ants (0 total): 
	Single Pols (1 total): 202n
No description has been provided for this image
Node 19:
	Antpols (1 total): 206n
	Whole Ants (0 total): 
	Single Pols (1 total): 206n
No description has been provided for this image
Node 20:
	Antpols (3 total): 227e, 227n, 261n
	Whole Ants (1 total): 227
	Single Pols (1 total): 261n
No description has been provided for this image
Node 21:
	Antpols (3 total): 214e, 214n, 326e
	Whole Ants (1 total): 214
	Single Pols (1 total): 326e
No description has been provided for this image
Node 22:
	Antpols (2 total): 250e, 253n
	Whole Ants (0 total): 
	Single Pols (2 total): 250e, 253n
No description has been provided for this image
Node 23:
	Antpols (1 total): 255n
	Whole Ants (0 total): 
	Single Pols (1 total): 255n
No description has been provided for this image

Redcal chi^2: (51 antpols across 48 antennas)

These antennas have been idenfied as not redundantly calibrating well, even after passing the above checks.

All Bad Antpols: 17n, 35e, 35n, 45n, 48e, 59n, 62n, 63n, 65e, 66n, 73n, 75e, 77e, 78n, 87n, 90n, 95n, 103e, 104e, 106e, 136n, 139e, 139n, 143e, 144e, 148n, 149n, 151e, 156e, 160n, 164n, 174n, 176e, 188n, 198e, 202e, 203e, 206e, 207e, 211e, 217e, 222n, 234e, 242e, 242n, 243e, 245e, 269e, 270n, 272n, 282n

Node 1:
	Antpols (1 total): 17n
	Whole Ants (0 total): 
	Single Pols (1 total): 17n
Node 3:
	Antpols (2 total): 65e, 66n
	Whole Ants (0 total): 
	Single Pols (2 total): 65e, 66n
Node 5:
	Antpols (4 total): 45n, 59n, 73n, 75e
	Whole Ants (0 total): 
	Single Pols (4 total): 45n, 59n, 73n, 75e
Node 6:
	Antpols (7 total): 35e, 35n, 48e, 62n, 63n, 77e, 78n
	Whole Ants (1 total): 35
	Single Pols (5 total): 48e, 62n, 63n, 77e, 78n
Node 8:
	Antpols (3 total): 87n, 103e, 104e
	Whole Ants (0 total): 
	Single Pols (3 total): 87n, 103e, 104e
Node 9:
	Antpols (2 total): 90n, 106e
	Whole Ants (0 total): 
	Single Pols (2 total): 90n, 106e
Node 11:
	Antpols (1 total): 95n
	Whole Ants (0 total): 
	Single Pols (1 total): 95n
Node 12:
	Antpols (3 total): 136n, 156e, 176e
	Whole Ants (0 total): 
	Single Pols (3 total): 136n, 156e, 176e
Node 13:
	Antpols (3 total): 139e, 139n, 160n
	Whole Ants (1 total): 139
	Single Pols (1 total): 160n
Node 14:
	Antpols (3 total): 143e, 144e, 164n
	Whole Ants (0 total): 
	Single Pols (3 total): 143e, 144e, 164n
Node 15:
	Antpols (3 total): 148n, 149n, 188n
	Whole Ants (0 total): 
	Single Pols (3 total): 148n, 149n, 188n
Node 16:
	Antpols (2 total): 151e, 174n
	Whole Ants (0 total): 
	Single Pols (2 total): 151e, 174n
Node 17:
	Antpols (3 total): 198e, 217e, 234e
	Whole Ants (0 total): 
	Single Pols (3 total): 198e, 217e, 234e
Node 18:
	Antpols (3 total): 202e, 203e, 222n
	Whole Ants (0 total): 
	Single Pols (3 total): 202e, 203e, 222n
Node 19:
	Antpols (5 total): 206e, 207e, 242e, 242n, 243e
	Whole Ants (1 total): 242
	Single Pols (3 total): 206e, 207e, 243e
Node 20:
	Antpols (2 total): 211e, 245e
	Whole Ants (0 total): 
	Single Pols (2 total): 211e, 245e
Node 22:
	Antpols (2 total): 269e, 282n
	Whole Ants (0 total): 
	Single Pols (2 total): 269e, 282n
Node 23:
	Antpols (2 total): 270n, 272n
	Whole Ants (0 total): 
	Single Pols (2 total): 270n, 272n

Full-Day Visualizations¶

InĀ [27]:
def classification_plot(col):
    class_array = classification_array(col)
    plt.figure(figsize=(12, len(ants) / 10), dpi=100)
    plt.imshow(class_array.T, aspect='auto', interpolation='none', cmap='RdYlGn', vmin=0, vmax=2,
               extent=[jds[0] - np.floor(jds[0]), jds[-1] - np.floor(jds[0]), len(ants), 0])
    plt.xlabel(f'JD - {int(jds[0])}')
    plt.yticks(ticks=np.arange(.5, len(ants)+.5), labels=[ant for ant in ants], fontsize=6)
    plt.ylabel('Antenna Number (East First, Then North)')
    plt.gca().tick_params(right=True, top=True, labelright=True, labeltop=True)
    plt.tight_layout()
    plt.title(f'{col}: Green is "good", Yellow is "suspect", Red is "bad"')

Figure 1: Per-File Overall Antenna Classification Summary¶

This "big green board" shows the overall (i.e. after redundant calibration) classification of antennas on a per-file basis. This is useful for looking at time-dependent effects across the array. While only antenna numbers are labeled, both polarizations are shown, first East then North going down, above and below the antenna's tick mark.

InĀ [28]:
classification_plot('Antenna Class')
No description has been provided for this image
InĀ [29]:
# compute flag fractions for all classifiers and antennas
frac_flagged = []
for col in class_cols[1:]:
    class_array = np.vstack([t[col] for t in tables])
    class_array[class_array == 'good'] = False
    class_array[class_array == 'suspect'] = False
    class_array[class_array == 'bad'] = True
    frac_flagged.append(np.sum(class_array, axis=0))
InĀ [30]:
def plot_flag_frac_all_classifiers():
    ticks = []
    for i, col in enumerate(list(class_cols[1:])):
        ticks.append(f'{col} ({np.nanmean(np.array(frac_flagged).astype(float)[i]) / len(csv_files):.2%})')
    plt.figure(figsize=(8, len(ants) / 10), dpi=100)
    plt.imshow(np.array(frac_flagged).astype(float).T, aspect='auto', interpolation='none', cmap='viridis')
    plt.xticks(ticks=np.arange(len(list(class_cols[1:]))), labels=ticks, rotation=-45, ha='left')
    plt.yticks(ticks=np.arange(.5, len(ap_strs)+.5, 2), labels=[ant for ant in ants], fontsize=6)
    plt.ylabel('Antenna Number (East First, Then North)')
    plt.gca().tick_params(right=True, labelright=True,)
    ax2 = plt.gca().twiny()
    ax2.set_xticks(ticks=np.arange(len(list(class_cols[1:]))), labels=ticks, rotation=45, ha='left')
    plt.colorbar(ax=plt.gca(), label=f'Number of Files Flagged Out of {len(csv_files)}', aspect=50)
    plt.tight_layout()

Figure 2: Per-Classifier Antenna Flagging Summary¶

This plot shows the fraction of files flagged for each reason for each antenna. It's useful for seeing which problems are transitory and which ones are more common. Note that not all flags are independent and in particular redcal chi^2 takes an OR of other classifications as an input. Also note that only antenna numbers are labeled, both polarizations are shown, first East then North going down, above and below the antenna's tick mark.

InĀ [31]:
plot_flag_frac_all_classifiers()
No description has been provided for this image
InĀ [32]:
def array_class_plot():
    fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
    if len([ant for ant in hd.data_ants if ant < 320]) > 0:
        plot_antclass(hd.antpos, overall_class, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, 
                      title=f'HERA Core: Overall Flagging Based on {overall_thresh:.1%} Daily Threshold')
    if len([ant for ant in hd.data_ants if ant >= 320]) > 0:
        plot_antclass(hd.antpos, overall_class, ax=axes[1], ants=[ant for ant in hd.data_ants if ant >= 320], radius=50, title='Outriggers')

Figure 3: Array Visualization of Overall Daily Classification¶

Overall classification of antenna-polarizations shown on the array layout. If any antenna is marked bad for any reason more than the threshold (default 10%), it is marked bad here. Likewise, if any antenna is marked suspect for more than 10% of the night (but not bad), it's suspect here.

InĀ [33]:
if SUM_FILE is not None: array_class_plot()
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
WARNING:matplotlib.axes._base:Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
No description has been provided for this image
InĀ [34]:
for repo in ['pyuvdata', 'hera_cal', 'hera_qm', 'hera_notebook_templates']:
    exec(f'from {repo} import __version__')
    print(f'{repo}: {__version__}')
pyuvdata: 3.1.3
hera_cal: 3.7.1.dev45+g4a0c6f1
hera_qm: 2.2.1.dev2+ga535e9e
hera_notebook_templates: 0.1.dev989+gee0995d