Calibration Smoothing¶
by Josh Dillon, last updated July 19, 2023
This notebook runs calibration smoothing to the gains coming out of file_calibration notebook. It removes any flags founds on by that notebook and replaces them with flags generated from full_day_rfi and full_day_antenna_flagging. It also plots the results for a couple of antennas.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Full-Day Gain Amplitudes Before and After smooth_cal
¶
• Figure 2: Full-Day Gain Phases Before and After smooth_cal
¶
• Figure 3: Full-Day $\chi^2$ / DoF Waterfall from Redundant-Baseline Calibration¶
• Figure 4: Average $\chi^2$ per Antenna vs. Time and Frequency¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import copy
import warnings
import matplotlib
import matplotlib.pyplot as plt
from hera_cal import io, utils, smooth_cal
from hera_qm.time_series_metrics import true_stretches
%matplotlib inline
from IPython.display import display, HTML
Parse inputs¶
# get files
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459867/zen.2459867.43004.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
CAL_SUFFIX = os.environ.get("CAL_SUFFIX", 'sum.omni.calfits')
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ANT_FLAG_SUFFIX = os.environ.get("ANT_FLAG_SUFFIX", 'sum.antenna_flags.h5')
RFI_FLAG_SUFFIX = os.environ.get("RFI_FLAG_SUFFIX", 'sum.flag_waterfall.h5')
FREQ_SMOOTHING_SCALE = float(os.environ.get("FREQ_SMOOTHING_SCALE", 10.0)) # MHz
TIME_SMOOTHING_SCALE = float(os.environ.get("TIME_SMOOTHING_SCALE", 6e5)) # seconds
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
PER_POL_REFANT = os.environ.get("PER_POL_REFANT", "False").upper() == "TRUE"
for setting in ['SUM_FILE', 'SUM_SUFFIX', 'CAL_SUFFIX', 'SMOOTH_CAL_SUFFIX', 'ANT_FLAG_SUFFIX',
'RFI_FLAG_SUFFIX', 'FREQ_SMOOTHING_SCALE', 'TIME_SMOOTHING_SCALE', 'EIGENVAL_CUTOFF', 'PER_POL_REFANT']:
print(f'{setting} = {eval(setting)}')
SUM_FILE = /mnt/sn1/data1/2460577/zen.2460577.25257.sum.uvh5 SUM_SUFFIX = sum.uvh5 CAL_SUFFIX = sum.omni.calfits SMOOTH_CAL_SUFFIX = sum.smooth.calfits ANT_FLAG_SUFFIX = sum.antenna_flags.h5 RFI_FLAG_SUFFIX = sum.flag_waterfall.h5 FREQ_SMOOTHING_SCALE = 10.0 TIME_SMOOTHING_SCALE = 600000.0 EIGENVAL_CUTOFF = 1e-12 PER_POL_REFANT = False
Load files and select reference antenna(s)¶
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, CAL_SUFFIX)
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1941 *.sum.omni.calfits files starting with /mnt/sn1/data1/2460577/zen.2460577.25257.sum.omni.calfits.
rfi_flag_files_glob = sum_glob.replace(SUM_SUFFIX, RFI_FLAG_SUFFIX)
rfi_flag_files = sorted(glob.glob(rfi_flag_files_glob))
print(f'Found {len(rfi_flag_files)} *.{RFI_FLAG_SUFFIX} files starting with {rfi_flag_files[0]}.')
Found 1941 *.sum.flag_waterfall.h5 files starting with /mnt/sn1/data1/2460577/zen.2460577.25257.sum.flag_waterfall.h5.
ant_flag_files_glob = sum_glob.replace(SUM_SUFFIX, ANT_FLAG_SUFFIX)
ant_flag_files = sorted(glob.glob(ant_flag_files_glob))
print(f'Found {len(ant_flag_files)} *.{ANT_FLAG_SUFFIX} files starting with {ant_flag_files[0]}.')
Found 1941 *.sum.antenna_flags.h5 files starting with /mnt/sn1/data1/2460577/zen.2460577.25257.sum.antenna_flags.h5.
cs = smooth_cal.CalibrationSmoother(cal_files, flag_file_list=(ant_flag_files + rfi_flag_files),
ignore_calflags=True, pick_refant=False, load_chisq=True, load_cspa=True)
invalid value encountered in multiply
cs.refant = smooth_cal.pick_reference_antenna(cs.gain_grids, cs.flag_grids, cs.freqs, per_pol=True)
for pol in cs.refant:
print(f'Reference antenna {cs.refant[pol][0]} selected for smoothing {pol} gains.')
if not PER_POL_REFANT:
# in this case, rephase both pols separately before smoothing, but also smooth the relative polarization calibration phasor
overall_refant = smooth_cal.pick_reference_antenna({ant: cs.gain_grids[ant] for ant in cs.refant.values()},
{ant: cs.flag_grids[ant] for ant in cs.refant.values()},
cs.freqs, per_pol=False)
print(f'Overall reference antenna {overall_refant} selected.')
other_refant = [ant for ant in cs.refant.values() if ant != overall_refant][0]
relative_pol_phasor = cs.gain_grids[overall_refant] * cs.gain_grids[other_refant].conj() # TODO: is this conjugation right?
relative_pol_phasor /= np.abs(relative_pol_phasor)
Reference antenna 70 selected for smoothing Jee gains. Reference antenna 111 selected for smoothing Jnn gains.
Overall reference antenna (70, 'Jee') selected.
# duplicate a small number of abscal gains for plotting
antnums = set([ant[0] for ant in cs.ants])
flags_per_antnum = [np.sum(cs.flag_grids[ant, 'Jnn']) + np.sum(cs.flag_grids[ant, 'Jee']) for ant in antnums]
refant_nums = [ant[0] for ant in cs.refant.values()]
candidate_ants = [ant for ant, nflags in zip(antnums, flags_per_antnum) if (ant not in refant_nums) and (nflags <= np.percentile(flags_per_antnum, 25))
and not np.all(cs.flag_grids[ant, 'Jee']) and not np.all(cs.flag_grids[ant, 'Jnn'])]
ants_to_plot = [func(candidate_ants) for func in (np.min, np.max)]
abscal_gains = {}
for pol in ['Jee', 'Jnn']:
for antnum in ants_to_plot:
refant_here = (cs.refant[pol] if PER_POL_REFANT else overall_refant)
abscal_gains[antnum, pol] = cs.gain_grids[(antnum, pol)] * np.abs(cs.gain_grids[refant_here]) / cs.gain_grids[refant_here]
cs.rephase_to_refant(propagate_refant_flags=True)
Perform smoothing¶
if not PER_POL_REFANT:
# treat the relative_pol_phasor as if it were antenna -1
cs.gain_grids[(-1, other_refant[1])] = relative_pol_phasor
cs.flag_grids[(-1, other_refant[1])] = cs.flag_grids[overall_refant] | cs.flag_grids[other_refant]
cs.time_freq_2D_filter(freq_scale=FREQ_SMOOTHING_SCALE, time_scale=TIME_SMOOTHING_SCALE, eigenval_cutoff=EIGENVAL_CUTOFF,
method='DPSS', fit_method='lu_solve', fix_phase_flips=True, flag_phase_flip_ints=True)
2 phase flips detected on antenna (73, 'Jnn'). A total of 83 integrations were phase-flipped relative to the 0th integration between 2460577.531747003 and 2460577.5409185486.
2 phase flips detected on antenna (46, 'Jnn'). A total of 82 integrations were phase-flipped relative to the 0th integration between 2460577.531747003 and 2460577.5408067005.
if not PER_POL_REFANT:
# put back in the smoothed phasor, ensuring the amplitude is 1 and that data are flagged anywhere either polarization's refant is flagged
smoothed_relative_pol_phasor = cs.gain_grids[(-1, other_refant[-1])] / np.abs(cs.gain_grids[(-1, other_refant[-1])])
for ant in cs.gain_grids:
if ant[0] >= 0 and ant[1] == other_refant[1]:
cs.gain_grids[ant] /= smoothed_relative_pol_phasor
cs.flag_grids[ant] |= (cs.flag_grids[(-1, other_refant[1])])
cs.refant = overall_refant
Plot results¶
lst_grid = utils.JD2LST(cs.time_grid) * 12 / np.pi
lst_grid[lst_grid > lst_grid[-1]] -= 24
def amplitude_plot(ant_to_plot):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Pick vmax to not saturate 90% of the abscal gains
vmax = np.max([np.percentile(np.abs(cs.gain_grids[ant_to_plot, pol][~cs.flag_grids[ant_to_plot, pol]]), 99) for pol in ['Jee', 'Jnn']])
display(HTML(f'<h2>Antenna {ant_to_plot} Amplitude Waterfalls</h2>'))
# Plot abscal gain amplitude waterfalls for a single antenna
fig, axes = plt.subplots(4, 2, figsize=(14,14), gridspec_kw={'height_ratios': [1, 1, .4, .4]})
for ax, pol in zip(axes[0], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=0, vmax=vmax, extent=extent)
ax.set_title(f'Smoothcal Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized' )
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now flagged plot abscal waterfall
for ax, pol in zip(axes[1], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=0, vmax=vmax, extent=extent)
ax.set_title(f'Abscal Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized' )
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot mean gain spectra
for ax, pol in zip(axes[2], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_spectrum = np.sum(cs.flag_grids[ant], axis=0)
to_plot = nflags_spectrum <= np.percentile(nflags_spectrum, 75)
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), axis=0)[to_plot], 'r.', label='Abscal')
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), axis=0)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([0, vmax])
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('|g| (unitless)')
ax.set_title(f'Mean Infrequently-Flagged Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized')
ax.legend(loc='upper left')
# Now plot mean gain time series
for ax, pol in zip(axes[3], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_series = np.sum(cs.flag_grids[ant], axis=1)
to_plot = nflags_series <= np.percentile(nflags_series, 75)
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), axis=1)[to_plot], 'r.', label='Abscal')
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), axis=1)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([0, vmax])
ax.set_xlabel('LST (hours)')
ax.set_ylabel('|g| (unitless)')
ax.set_title(f'Mean Infrequently-Flagged Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized')
ax.set_xticklabels(ax.get_xticks() % 24)
ax.legend(loc='upper left')
plt.tight_layout()
plt.show()
def phase_plot(ant_to_plot):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
display(HTML(f'<h2>Antenna {ant_to_plot} Phase Waterfalls</h2>'))
fig, axes = plt.subplots(4, 2, figsize=(14,14), gridspec_kw={'height_ratios': [1, 1, .4, .4]})
# Plot phase waterfalls for a single antenna
for ax, pol in zip(axes[0], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=-np.pi, vmax=np.pi, extent=extent)
refant = (cs.refant[pol] if isinstance(cs.refant, dict) else cs.refant)
ax.set_title(f'Smoothcal Gain Phase of Ant {ant[0]}{pol[-1]} / Ant {refant[0]}{refant[1][-1]}')
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot abscal phase waterfall
for ax, pol in zip(axes[1], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=-np.pi, vmax=np.pi, extent=extent)
refant = (cs.refant[pol] if isinstance(cs.refant, dict) else cs.refant)
ax.set_title(f'Abscal Gain Phase of Ant {ant[0]}{pol[-1]} / Ant {refant[0]}{refant[1][-1]}')
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot median gain spectra
for ax, pol in zip(axes[2], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_spectrum = np.sum(cs.flag_grids[ant], axis=0)
to_plot = nflags_spectrum <= np.percentile(nflags_spectrum, 75)
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmedian(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), axis=0)[to_plot], 'r.', label='Abscal')
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmedian(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), axis=0)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([-np.pi, np.pi])
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_xlabel('Frequency (MHz)')
refant = (cs.refant[pol] if isinstance(cs.refant, dict) else cs.refant)
ax.set_ylabel(f'Phase of g$_{{{ant[0]}{pol[-1]}}}$ / g$_{{{refant[0]}{refant[1][-1]}}}$')
ax.set_title(f'Median Infrequently-Flagged Gain Phase of Ant {ant[0]}{pol[-1]} / Ant {refant[0]}{refant[1][-1]}')
ax.legend(loc='upper left')
# # Now plot median gain time series
for ax, pol in zip(axes[3], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_series = np.sum(cs.flag_grids[ant], axis=1)
to_plot = nflags_series <= np.percentile(nflags_series, 75)
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), axis=1)[to_plot], 'r.', label='Abscal')
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), axis=1)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([-np.pi, np.pi])
ax.set_xlabel('LST (hours)')
refant = (cs.refant[pol] if isinstance(cs.refant, dict) else cs.refant)
ax.set_ylabel(f'Phase of g$_{{{ant[0]}{pol[-1]}}}$ / g$_{{{refant[0]}{refant[1][-1]}}}$')
ax.set_title(f'Mean Infrequently-Flagged Gain Phase of Ant {ant[0]}{pol[-1]} / Ant {refant[0]}{refant[1][-1]}')
ax.set_xticklabels(ax.get_xticks() % 24)
ax.legend(loc='upper left')
plt.tight_layout()
plt.show()
Figure 1: Full-Day Gain Amplitudes Before and After smooth_cal
¶
Here we plot abscal
and smooth_cal
gain amplitudes for both of the sample antennas. We also show means across time/frequency, excluding frequencies/times that are frequently flagged.
for ant_to_plot in ants_to_plot:
amplitude_plot(ant_to_plot)
Antenna 3 Amplitude Waterfalls
Antenna 283 Amplitude Waterfalls
Figure 2: Full-Day Gain Phases Before and After smooth_cal
¶
Here we plot abscal
and smooth_cal
phases relative to each polarization's reference antenna for both of the sample antennas. We also show medians across time/frequency, excluding frequencies/times that are frequently flagged.
for ant_to_plot in ants_to_plot:
phase_plot(ant_to_plot)
Antenna 3 Phase Waterfalls
Antenna 283 Phase Waterfalls
Examine $\chi^2$¶
def chisq_plot():
fig, axes = plt.subplots(1, 2, figsize=(14, 10), sharex=True, sharey=True)
extent = [cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
for ax, pol in zip(axes, ['Jee', 'Jnn']):
refant = (cs.refant[pol] if isinstance(cs.refant, dict) else cs.refant)
im = ax.imshow(np.where(cs.flag_grids[refant], np.nan, cs.chisq_grids[pol]), vmin=1, vmax=5,
aspect='auto', cmap='turbo', interpolation='none', extent=extent)
ax.set_yticklabels(ax.get_yticks() % 24)
ax.set_title(f'{pol[1:]}-Polarized $\\chi^2$ / DoF')
ax.set_xlabel('Frequency (MHz)')
axes[0].set_ylabel('LST (hours)')
plt.tight_layout()
fig.colorbar(im, ax=axes, pad=.07, label='$\\chi^2$ / DoF', orientation='horizontal', extend='both', aspect=50)
Figure 3: Full-Day $\chi^2$ / DoF Waterfall from Redundant-Baseline Calibration¶
Here we plot $\chi^2$ per degree of freedom from redundant-baseline calibration for both polarizations separately. While this plot is a little out of place, as it was not produced by this notebook, it is a convenient place where all the necessary components are readily available. If the array were perfectly redundant and any non-redundancies in the calibrated visibilities were explicable by thermal noise alone, this waterfall should be all 1.
chisq_plot()
set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator. set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.
avg_cspa_vs_time = {ant: np.nanmean(np.where(cs.flag_grids[ant], np.nan, cs.cspa_grids[ant]), axis=1) for ant in cs.ants}
avg_cspa_vs_freq = {ant: np.nanmean(np.where(cs.flag_grids[ant], np.nan, cs.cspa_grids[ant]), axis=0) for ant in cs.ants}
Mean of empty slice
Mean of empty slice
def cspa_vs_time_plot():
fig, axes = plt.subplots(2, 1, figsize=(14, 8), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['Jee', 'Jnn']):
detail_cutoff = np.percentile([np.nanmean(m) for ant, m in avg_cspa_vs_time.items()
if ant[1] == pol and np.isfinite(np.nanmean(m))], 95)
for ant in avg_cspa_vs_time:
if ant[1] == pol and not np.all(cs.flag_grids[ant]):
if np.nanmean(avg_cspa_vs_time[ant]) > detail_cutoff:
ax.plot(lst_grid, avg_cspa_vs_time[ant], label=ant, zorder=100)
else:
ax.plot(lst_grid, avg_cspa_vs_time[ant], c='grey', alpha=.2, lw=.5)
ax.legend(title=f'{pol[1:]}-Polarized', ncol=2)
ax.set_ylabel('Mean Unflagged $\\chi^2$ per Antenna')
ax.set_xlabel('LST (hours)')
ax.set_xticklabels(ax.get_xticks() % 24)
plt.ylim([1, 5.4])
plt.tight_layout()
def cspa_vs_freq_plot():
fig, axes = plt.subplots(2, 1, figsize=(14, 6), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['Jee', 'Jnn']):
detail_cutoff = np.percentile([np.nanmean(m) for ant, m in avg_cspa_vs_freq.items()
if ant[1] == pol and np.isfinite(np.nanmean(m))], 95)
for ant in avg_cspa_vs_freq:
if ant[1] == pol and not np.all(cs.flag_grids[ant]):
if np.nanmean(avg_cspa_vs_freq[ant]) > detail_cutoff:
ax.plot(cs.freqs / 1e6, avg_cspa_vs_freq[ant], label=ant, zorder=100)
else:
ax.plot(cs.freqs / 1e6, avg_cspa_vs_freq[ant], c='grey', alpha=.2, lw=.5)
ax.legend(title=f'{pol[1:]}-Polarized', ncol=2)
ax.set_ylabel('Mean Unflagged $\\chi^2$ per Antenna')
ax.set_xlabel('Frequency (MHz)')
plt.ylim([1, 5.4])
plt.tight_layout()
Figure 4: Average $\chi^2$ per Antenna vs. Time and Frequency¶
Here we plot $\chi^2$ per antenna from redundant-baseline calibration, separating polarizations and averaging the unflagged pixels in the waterfalls over frequency or time. The worst 5% of antennas are shown in color and highlighted in the legends, the rest are shown in grey.
cspa_vs_time_plot()
cspa_vs_freq_plot()
Mean of empty slice set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator. Mean of empty slice
set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator. Mean of empty slice
Save Results¶
add_to_history = 'Produced by calibration_smoothing notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
cs.write_smoothed_cal(output_replace=(CAL_SUFFIX, SMOOTH_CAL_SUFFIX), add_to_history=add_to_history, clobber=True)
Mean of empty slice
invalid value encountered in multiply invalid value encountered in divide
invalid value encountered in multiply
overflow encountered in multiply overflow encountered in cast
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 34.08 minutes.