In [1]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec
import numpy as np
from pyuvdata import UVCal, UVData
import sys
import glob
import uvtools as uvt
from astropy.time import Time
from astropy.coordinates import EarthLocation, AltAz, Angle
from astropy.coordinates import SkyCoord as sc
import pandas
import warnings 
import copy
from hera_notebook_templates import utils
import hera_qm
from hera_mc import cm_hookup
import importlib
from scipy import stats
from IPython.display import display, HTML
#warnings.filterwarnings('ignore')

%matplotlib inline
%config InlineBackend.figure_format = 'retina'
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
#get data location
data_path = os.environ['DATA_PATH']
print(f'DATA_PATH = "{data_path}"')
statuses = os.environ['APRIORI_STATUSES']
print(f'APRIORI_STATUSES = {statuses}')
JD = os.environ['JULIANDATE']
print(f'JULIANDATE = {JD}')
utc = Time(JD, format='jd').datetime
print(f'Date = {utc.month}-{utc.day}-{utc.year}')
DATA_PATH = "/mnt/sn1/data2/2460902"
APRIORI_STATUSES = dish_maintenance,dish_ok,RF_maintenance,RF_ok,digital_ok,digital_maintenance,calibration_maintenance,calibration_triage,calibration_ok
JULIANDATE = 2460902
Date = 8-14-2025
In [3]:
# Load in data
HHfiles, difffiles, HHautos, diffautos, uvdx, uvdy = utils.load_data(data_path,JD)
    
uvd = UVData()
unread = True
readInd=0
while unread and readInd<len(HHautos):
    try:
        uvd.read(HHautos[readInd])
        unread = False
    except:
        readInd += 1
        continue
use_ants = utils.get_use_ants(uvd,statuses,JD)
print(f'This day contains {len(use_ants)} antennas of the given status category.')
uvd.read(HHautos[::10], skip_bad_files=True, antenna_nums = use_ants)
lsts = uvd.lst_array
uvdx.select(antenna_nums=use_ants)
uvdy.select(antenna_nums=use_ants)
377 sum files found between JDs 2460902.21076 and 2460902.44867
377 diff files found between JDs 2460902.21076 and 2460902.44867
377 sum auto files found between JDs 2460902.21076 and 2460902.44867
377 diff auto files found between JDs 2460902.21076 and 2460902.44867
This day contains 298 antennas of the given status category.

Sky Coverage Map¶

Map of the sky (made using the Haslam 408MHz map). The RA/DEC range covered by this night of observation is shaded based on a 12 degree FWHM of the beam. Horizontal dashed lines represent the stripe that HERA can observe, while the shaded region is what was observed on this night. Vertical lines represent the beginning and ending LSTs of this observation. Selected sources are labelled, sources included are those in the GLEAM 4Jy catalog with a flux >10.9 Jy. Note that the map is clipped at the northern horizon.

In [4]:
sources = utils.gather_source_list()
utils.plot_sky_map(uvd,dec_pad=55,ra_pad=55,clip=False,sources=sources)
No description has been provided for this image

LST Coverage¶

Shows the LSTs (in hours) and JDs for which data is collected. Green represents data, red means no data.

In [5]:
utils.plot_lst_coverage(uvd)
No description has been provided for this image

Autocorrelations for a single file¶

This plot shows autocorrelations for one timestamp of each antenna that is active and each polarization. For each node, antennas are ordered by SNAP number, and within that by SNAP input number. The antenna number label color corresponds to the a priori status of that antenna.

In [6]:
### plot autos
utils.plot_autos(uvdx, uvdy)
No description has been provided for this image

Waterfalls of Autocorrelation Amplitudes for each Antenna and Each polarization¶

These plots show autocorrelation waterfalls of each antenna that is active and whose status qualifies for this notebook. For each node, antennas are ordered by SNAP number, and within that by SNAP input number. The antenna number label color corresponds to the a priori status of that antenna.

In [7]:
utils.plot_wfs(uvd, pol = 0)
No description has been provided for this image
In [8]:
utils.plot_wfs(uvd, pol = 1)
No description has been provided for this image

Correlation Metrics¶

The first plot shows the correlation metric (described below) for a set of baseline types, as calculated at several times throughout the night. It is expected that longer baselines (darker color) will exhibit lower values than the short baselines.

The matrices show the phase correlation between antennas. Using the even and odd visibilities, each pixel is calculated as (even/abs(even)) * (conj(odd)/abs(odd)), and then averaged across time and frequency. If the phases are noise-like, this value will average down to zero. If the antennas are well correlated, the phases should not be noise-like, and this value should average to 1. The lines denoting node boundaries are intended to help confirm that inter-node correlations are functioning - if they aren't, this plot will appear block-diagonal.

This metric has shown to be LST locked - when comparing to other nights, be sure to compare for the same LST. It is expected that some LSTs will look much better or worse than others.

Note: Within each node, the order of antennas is determined by snap, and within that by snap input number.

In [9]:
badAnts = []
badAnts = utils.plotNodeAveragedSummary(uvd,HHfiles,JD,use_ants,mat_pols=['xx','yy','xy','yx'])
No description has been provided for this image
WARNING: unable to read /mnt/sn1/data2/2460902/zen.2460902.41757.sum.uvh5
No description has been provided for this image

Visibility amplitude spectra for a set of redundant baselines, labeled by inter vs. intranode baselines. The red and blue should exhibit the same bandpass shape - if the red are consistently different from the blue, this indicates an issue with internode correlations.

Note: antennas that were identified as bad by the correlation matrix have been removed from this plot.

In [10]:
utils.plotVisibilitySpectra(HHfiles[len(HHfiles)//2+1], JD, use_ants, badAnts=[])
<Figure size 640x480 with 0 Axes>
No description has been provided for this image

Even and Odd File Checks¶

A waterfall showing the ratio between the even and odd visibilities. The purpose of this is to highlight xengine failures, which will cause this value to fall to zero or go to infinity. If things are working properly, this value should be stable at 1. The boundaries between different x-engines are shown by the vertical white lines.

In [11]:
if len(HHautos) == len(diffautos):
    uvd_diff = UVData()
    uvd_diff.read(diffautos[::10], skip_bad_files=True, antenna_nums=use_ants)
    rat = utils.plotEvenOddWaterfalls(uvd,uvd_diff)
else:
    uvd_diff = UVData()
    use_diffs = [f for f in diffautos if '%s/zen.%s.%s.sum.autos.uvh5' % (data_path,f.split('.')[1],f.split('.')[2]) in HHautos[::10]]
    uvd_diff.read(use_diffs, skip_bad_files=True, antenna_nums = use_ants)
    uvd_sum = uvd.select(times=np.unique(uvd_diff.time_array),inplace=False)
    rat = utils.plotEvenOddWaterfalls(uvd_sum,uvd_diff)
No description has been provided for this image

Crossed Antenna Check¶

These are differences between different panels of the correlation matrices shown above (see panel titles for specifics). Antennas showing as consistently blue are ones which are correlating stronger in the cross pols than in the auto pols, indicating that the antenna polarizations are likely crossed.

In [12]:
crossedAnts = utils.plotNodeAveragedSummary(uvd,HHfiles,JD,use_ants,mat_pols=['xx','yy','xy','yx'],plotRatios=True,
                                       plotSummary=False)
No description has been provided for this image

Antenna Positions¶

Antennas outlined in black here have been identified by the correlation matrix as bad antennas. Antennas with a colorful outline correspond to their status as identified by ant_metrics (see above plot). Faded antennas are those not meeting the apriori status requirement for this notebook run. Gold stars are node box locations.

In [13]:
uvd1 = UVData()
uvd1.read(HHfiles[readInd], skip_bad_files=True)
utils.plot_antenna_positions(uvd1, badAnts=badAnts,use_ants=use_ants)
No description has been provided for this image

Observer Inspection Plots¶

Antennas of status digital_OK or better that are flagged as bad by any of the above metrics are plotted here so observers can inspect their failures in more detail. Additionally, a 'good' template has been used to identify outliers. The upper line plots are averages over the whole observation, and the lower line plots are slices of a single time in the middle of the observation. These plots are recommended diagnostics for demoting antennas to lower statuses or reporting issues. If the plots below look OK, check other plots in notebook to hunt why the antenna was flagged. NOTE: The colorbar/power scales in these plots are NOT locked between antennas OR polarizations so that the detail will be visible on all plots. Be sure to check for reasonable power levels, as this may be the reason the antenna was flagged for inspection.

In [14]:
d, tempAnts = utils.flag_by_template(uvd,HHautos,JD,use_ants=use_ants,pols=['XX','YY'],plotMap=False)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[14], line 1
----> 1 d, tempAnts = utils.flag_by_template(uvd,HHautos,JD,use_ants=use_ants,pols=['XX','YY'],plotMap=False)

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/hera_notebook_templates/utils.py:112, in flag_by_template(uvd, HHfiles, jd, use_ants, pols, polDirs, temp_norm, plotMap)
    110 for i,lst in enumerate(use_lsts):
    111     hdat = UVData()
--> 112     hdat.read(use_files[i],antenna_nums=use_ants)
    113     for p,pol in enumerate(pols):
    114         ant_dfs[pol][lst] = {}

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/uvdata/uvdata.py:11125, in UVData.read(self, filename, axis, file_type, read_data, skip_bad_files, background_lsts, astrometry_library, ignore_name, use_future_array_shapes, antenna_nums, antenna_names, ant_str, bls, catalog_names, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, phase_center_ids, keep_all_metadata, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, check_autos, fix_autos, projected, correct_lat_lon, calc_lst, fix_old_proj, fix_use_ant_pos, params_file, obs_file, flags_file, layout_file, settings_file, data_column, pol_order, ignore_single_chan, raise_error, read_weights, allow_flex_pol, multidim_index, remove_flex_pol, blt_order, blts_are_rectangular, time_axis_faster_than_bls, data_array_dtype, use_aoflagger_flags, remove_dig_gains, remove_coarse_band, correct_cable_len, correct_van_vleck, cheby_approx, flag_small_auto_ants, propagate_coarse_flags, flag_init, edge_width, start_flag, end_flag, flag_dc_offset, remove_flagged_ants, phase_to_pointing_center, nsample_array_dtype, corrchunk, receivers, sidebands, mir_select_where, apply_tsys, apply_flags, apply_dedoppler, pseudo_cont, rechunk, compass_soln, swarm_only, codes_check, recompute_nbls)
  11106     self.read_ms(
  11107         filename,
  11108         data_column=data_column,
   (...)
  11121         astrometry_library=astrometry_library,
  11122     )
  11124 elif file_type == "uvh5":
> 11125     self.read_uvh5(
  11126         filename,
  11127         antenna_nums=antenna_nums,
  11128         antenna_names=antenna_names,
  11129         ant_str=ant_str,
  11130         bls=bls,
  11131         frequencies=frequencies,
  11132         freq_chans=freq_chans,
  11133         times=times,
  11134         time_range=time_range,
  11135         lsts=lsts,
  11136         lst_range=lst_range,
  11137         polarizations=polarizations,
  11138         blt_inds=blt_inds,
  11139         phase_center_ids=phase_center_ids,
  11140         catalog_names=catalog_names,
  11141         read_data=read_data,
  11142         data_array_dtype=data_array_dtype,
  11143         keep_all_metadata=keep_all_metadata,
  11144         multidim_index=multidim_index,
  11145         remove_flex_pol=remove_flex_pol,
  11146         background_lsts=background_lsts,
  11147         run_check=run_check,
  11148         check_extra=check_extra,
  11149         run_check_acceptability=run_check_acceptability,
  11150         strict_uvw_antpos_check=strict_uvw_antpos_check,
  11151         fix_old_proj=fix_old_proj,
  11152         fix_use_ant_pos=fix_use_ant_pos,
  11153         check_autos=check_autos,
  11154         fix_autos=fix_autos,
  11155         time_axis_faster_than_bls=time_axis_faster_than_bls,
  11156         blts_are_rectangular=blts_are_rectangular,
  11157         recompute_nbls=recompute_nbls,
  11158         astrometry_library=astrometry_library,
  11159     )
  11160     select = False
  11162 if select:

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/uvdata/uvdata.py:9816, in UVData.read_uvh5(self, filename, **kwargs)
   9809     raise ValueError(
   9810         "Reading multiple files from class specific "
   9811         "read functions is no longer supported. "
   9812         "Use the generic `uvdata.read` function instead."
   9813     )
   9815 uvh5_obj = uvh5.UVH5()
-> 9816 uvh5_obj.read_uvh5(filename, **kwargs)
   9817 self._convert_from_filetype(uvh5_obj)
   9818 del uvh5_obj

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/uvdata/uvh5.py:1074, in UVH5.read_uvh5(self, filename, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, phase_center_ids, catalog_names, keep_all_metadata, read_data, data_array_dtype, multidim_index, remove_flex_pol, background_lsts, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, fix_old_proj, fix_use_ant_pos, check_autos, fix_autos, use_future_array_shapes, blt_order, blts_are_rectangular, time_axis_faster_than_bls, recompute_nbls, astrometry_library)
   1063 self._read_header(
   1064     meta,
   1065     run_check=run_check,
   (...)
   1069     astrometry_library=astrometry_library,
   1070 )
   1072 if read_data:
   1073     # Now read in the data
-> 1074     self._get_data(
   1075         meta.datagrp,
   1076         antenna_nums=antenna_nums,
   1077         antenna_names=antenna_names,
   1078         ant_str=ant_str,
   1079         bls=bls,
   1080         frequencies=frequencies,
   1081         freq_chans=freq_chans,
   1082         times=times,
   1083         time_range=time_range,
   1084         lsts=lsts,
   1085         lst_range=lst_range,
   1086         polarizations=polarizations,
   1087         blt_inds=blt_inds,
   1088         phase_center_ids=phase_center_ids,
   1089         catalog_names=catalog_names,
   1090         data_array_dtype=data_array_dtype,
   1091         keep_all_metadata=keep_all_metadata,
   1092         multidim_index=multidim_index,
   1093     )
   1094 if close_meta:
   1095     meta.close()

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/uvdata/uvh5.py:749, in UVH5._get_data(self, dgrp, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, phase_center_ids, catalog_names, data_array_dtype, keep_all_metadata, multidim_index)
    744     raise ImportError(
    745         "hdf5plugin is not installed but is required to read this dataset"
    746     ) from hdf5plugin_error
    748 # figure out what data to read in
--> 749 blt_inds, freq_inds, pol_inds, history_update_string = self._select_preprocess(
    750     antenna_nums=antenna_nums,
    751     antenna_names=antenna_names,
    752     ant_str=ant_str,
    753     bls=bls,
    754     frequencies=frequencies,
    755     freq_chans=freq_chans,
    756     times=times,
    757     time_range=time_range,
    758     lsts=lsts,
    759     lst_range=lst_range,
    760     polarizations=polarizations,
    761     blt_inds=blt_inds,
    762     phase_center_ids=phase_center_ids,
    763     catalog_names=catalog_names,
    764 )
    766 # figure out which axis is the most selective
    767 if blt_inds is not None:

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/uvdata/uvdata.py:6719, in UVData._select_preprocess(self, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, phase_center_ids, catalog_names)
   6710 if bls is not None:
   6711     bls, polarizations = utils.bls._extract_bls_pol(
   6712         bls=bls,
   6713         polarizations=polarizations,
   (...)
   6717         nants_telescope=self.telescope.Nants,
   6718     )
-> 6719 blt_inds, blt_selections = utils.bltaxis._select_blt_preprocess(
   6720     select_antenna_nums=antenna_nums,
   6721     select_antenna_names=antenna_names,
   6722     bls=bls,
   6723     times=times,
   6724     time_range=time_range,
   6725     lsts=lsts,
   6726     lst_range=lst_range,
   6727     blt_inds=blt_inds,
   6728     phase_center_ids=phase_center_ids,
   6729     antenna_names=self.telescope.antenna_names,
   6730     antenna_numbers=self.telescope.antenna_numbers,
   6731     ant_1_array=self.ant_1_array,
   6732     ant_2_array=self.ant_2_array,
   6733     baseline_array=self.baseline_array,
   6734     time_array=self.time_array,
   6735     time_tols=self._time_array.tols,
   6736     lst_array=self.lst_array,
   6737     lst_tols=self._lst_array.tols,
   6738     phase_center_id_array=self.phase_center_id_array,
   6739 )
   6740 selections.extend(blt_selections)
   6742 freq_inds, freq_selections = utils.frequency._select_freq_helper(
   6743     frequencies=frequencies,
   6744     freq_chans=freq_chans,
   (...)
   6749     obj_spw_id_array=self.flex_spw_id_array,
   6750 )

File ~/mambaforge/envs/RTP/lib/python3.12/site-packages/pyuvdata/utils/bltaxis.py:386, in _select_blt_preprocess(select_antenna_nums, select_antenna_names, bls, times, time_range, lsts, lst_range, blt_inds, phase_center_ids, antenna_names, antenna_numbers, ant_1_array, ant_2_array, baseline_array, time_array, time_tols, lst_array, lst_tols, phase_center_id_array)
    381 ant_check = np.logical_or(
    382     np.isin(select_antenna_nums, ant_1_array),
    383     np.isin(select_antenna_nums, ant_2_array),
    384 )
    385 if not np.all(ant_check):
--> 386     raise ValueError(
    387         f"Antenna number {select_antenna_nums[~ant_check]} is not present "
    388         "in the ant_1_array or ant_2_array"
    389     )
    390 ant_blt_inds = np.where(
    391     np.logical_and(
    392         np.isin(ant_1_array, select_antenna_nums),
    393         np.isin(ant_2_array, select_antenna_nums),
    394     )
    395 )[0]
    396 ant_blt_inds = np.asarray(ant_blt_inds, dtype=np.int64)

ValueError: Antenna number [157 158 176 177 178 329 333 156 155 136 179 299 302 311 314 343 346 135
 300 312 347 342 301 313] is not present in the ant_1_array or ant_2_array
In [15]:
inspectAnts = utils.plot_inspect_ants(uvd,JD,badAnts=badAnts,use_ants=use_ants,
                                     tempAnts=tempAnts,crossedAnts=crossedAnts)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[15], line 2
      1 inspectAnts = utils.plot_inspect_ants(uvd,JD,badAnts=badAnts,use_ants=use_ants,
----> 2                                      tempAnts=tempAnts,crossedAnts=crossedAnts)

NameError: name 'tempAnts' is not defined

Mean-Subtracted Waterfalls¶

Here the mean value in each frequency bin has been subtracted out. This effectively subtracts out the bandpass shape, making time variations more visible.

In [16]:
utils.plot_wfs(uvd,0,mean_sub=True,jd=JD)
utils.plot_wfs(uvd,1,mean_sub=True,jd=JD)
No description has been provided for this image
No description has been provided for this image
In [ ]: