Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1572 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460553/zen.2460553.16909.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1572 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460553/zen.2460553.16909.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
53.365% of waterfall flagged to start. 56.948% of waterfall flagged after flagging z > 5.0 outliers.
57.426% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice
Mean of empty slice
Flagging an additional 2 integrations and 85 channels. Flagging 122 channels previously flagged 25.00% or more. Flagging 295 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 1 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 29 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 5 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 69.479% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1572 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460553/zen.2460553.16909.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460553/2460553_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460553.1689783307, 2460553.251074841], [2460553.251186689, 2460553.2612530184], [2460553.2613648665, 2460553.261700411], [2460553.261924107, 2460553.2621478033], [2460553.2623714996, 2460553.262595196], [2460553.262707044, 2460553.2631544364], [2460553.2633781326, 2460553.265503247], [2460553.265615095, 2460553.265726943], [2460553.265838791, 2460553.267963905], [2460553.2682994492, 2460553.2685231455], [2460553.2686349936, 2460553.2687468417], [2460553.269194234, 2460553.2695297785], [2460553.269865323, 2460553.2706482597], [2460553.270760108, 2460553.2712075002], [2460553.2713193484, 2460553.2759051207], [2460553.276016969, 2460553.2765762093], [2460553.2766880575, 2460553.2779183863], [2460553.2780302344, 2460553.2789250193], [2460553.2790368674, 2460553.2831752473], [2460553.2832870954, 2460553.284070032], [2460553.2841818803, 2460553.2845174246], [2460553.284964817, 2460553.2853003615], [2460553.2870899313, 2460553.2874254757], [2460553.2906690706, 2460553.290892767], [2460553.2913401593, 2460553.2914520074], [2460553.2916757036, 2460553.2918994], [2460553.293912666, 2460553.294136362], [2460553.2946956023, 2460553.2949192985], [2460553.297379957, 2460553.2976036533], [2460553.3009590963, 2460553.301518337], [2460553.3055448686, 2460553.3056567167], [2460553.307781831, 2460553.307893679], [2460553.31080173, 2460553.311137274], [2460553.3114728183, 2460553.3118083626], [2460553.312255755, 2460553.3125912994], [2460553.313262388, 2460553.3134860843], [2460553.3135979325, 2460553.3137097806], [2460553.3157230467, 2460553.316058591], [2460553.317512616, 2460553.317624464], [2460553.3178481604, 2460553.3179600085], [2460553.318519249, 2460553.3188547934], [2460553.322545781, 2460553.322769477], [2460553.3232168695, 2460553.3234405657], [2460553.323887958, 2460553.3239998063], [2460553.3241116544, 2460553.324559047], [2460553.328026338, 2460553.3282500342], [2460553.331046237, 2460553.3311580853], [2460553.3314936296, 2460553.331717326], [2460553.3339542877, 2460553.334066136], [2460553.33798082, 2460553.338092668], [2460553.3412244148, 2460553.341336263], [2460553.34681682, 2460553.3471523644], [2460553.347823453, 2460553.3479353013], [2460553.3500604155, 2460553.3501722636], [2460553.3516262886, 2460553.352185529], [2460553.3541987953, 2460553.3544224915], [2460553.354869884, 2460553.354981732], [2460553.356212061, 2460553.356435757], [2460553.358225327, 2460553.358449023], [2460553.3588964157, 2460553.359120112], [2460553.3596793525, 2460553.3597912006], [2460553.3599030487, 2460553.360014897], [2460553.360350441, 2460553.3605741374], [2460553.361133378, 2460553.361245226], [2460553.3615807705, 2460553.3616926186], [2460553.361804466, 2460553.3620281625], [2460553.3622518587, 2460553.362363707], [2460553.3628110993, 2460553.3629229474], [2460553.3630347955, 2460553.3632584917], [2460553.364488821, 2460553.3649362135], [2460553.3658309984, 2460553.366278391], [2460553.369633834, 2460553.3704167707], [2460553.3719826443, 2460553.3722063405], [2460553.373884062, 2460553.37399591], [2460553.3764565685, 2460553.3765684166], [2460553.3766802647, 2460553.376903961], [2460553.380371252, 2460553.3805949483], [2460553.381266037, 2460553.3814897332], [2460553.382384518, 2460553.3828319106], [2460553.383279303, 2460553.383391151], [2460553.3862992018, 2460553.386522898], [2460553.389319101, 2460553.389430949], [2460553.3902138853, 2460553.3904375816], [2460553.390996822, 2460553.3911086703], [2460553.3924508477, 2460553.392786392], [2460553.3933456326, 2460553.3934574807], [2460553.393793025, 2460553.393904873], [2460553.3950233543, 2460553.3958062907], [2460553.39703662, 2460553.3977077086], [2460553.3983787973, 2460553.3984906455], [2460553.400951304, 2460553.401063152], [2460553.401510544, 2460553.4017342404], [2460553.40531338, 2460553.406096317], [2460553.409675456, 2460553.4098991523], [2460553.410458393, 2460553.410682089], [2460553.414820469, 2460553.4151560133], [2460553.415715254, 2460553.41593895], [2460553.4162744945, 2460553.416721887], [2460553.418064064, 2460553.418175912], [2460553.4214195074, 2460553.4227616847], [2460553.422873533, 2460553.4235446216], [2460553.4237683173, 2460553.426228976], [2460553.426340824, 2460553.4307029], [2460553.430814748, 2460553.432604318], [2460553.4328280143, 2460553.434505736], [2460553.434617584, 2460553.437637483], [2460553.437749331, 2460553.4402099894], [2460553.4408810777, 2460553.448374901], [2460553.448486749, 2460553.4487104453], [2460553.449381534, 2460553.452848825], [2460553.4529606733, 2460553.4583293824], [2460553.4585530786, 2460553.4586649267], [2460553.458776775, 2460553.460007104], [2460553.460118952, 2460553.4613492815], [2460553.4615729777, 2460553.4623559145], [2460553.4624677626, 2460553.4655995094], [2460553.4657113575, 2460553.4663824462], [2460553.466941687, 2460553.467053535], [2460553.467165383, 2460553.468731256], [2460553.4688431043, 2460553.47029713], [2460553.470408978, 2460553.470632674], [2460553.4708563704, 2460553.471527459], [2460553.4718630034, 2460553.472534092], [2460553.4729814846, 2460553.4761132314], [2460553.4762250795, 2460553.4763369276], [2460553.476672472, 2460553.4771198644], [2460553.477455409, 2460553.4780146494], [2460553.4782383456, 2460553.478685738], [2460553.4792449786, 2460553.479468675], [2460553.480027915, 2460553.480139763], [2460553.480251611, 2460553.4805871556], [2460553.481146396, 2460553.4814819405], [2460553.482041181, 2460553.4827122698], [2460553.483159662, 2460553.4832715103], [2460553.4833833585, 2460553.4834952066], [2460553.483718903, 2460553.483942599], [2460553.4842781434, 2460553.48506108], [2460553.4852847764, 2460553.4855084727], [2460553.4856203203, 2460553.486179561], [2460553.4869624977, 2460553.487074346], [2460553.4886402194, 2460553.4888639157], [2460553.48919946, 2460553.489311308], [2460553.4898705487, 2460553.490094245], [2460553.4905416374, 2460553.4906534855], [2460553.4931141436, 2460553.49333784], [2460553.4966932833, 2460553.496916979], [2460553.4972525234, 2460553.4974762197], [2460553.4992657895, 2460553.4994894858], [2460553.5000487263, 2460553.5001605744], [2460553.5023975363, 2460553.5026212325], [2460553.5027330806, 2460553.503180473], [2460553.50396341, 2460553.504075258], [2460553.5042989543, 2460553.5045226505], [2460553.5098913596, 2460553.510115056], [2460553.5202932335, 2460553.5204050816]] freq_flags: [[46859741.2109375, 46981811.5234375], [47103881.8359375, 61019897.4609375], [61508178.7109375, 61630249.0234375], [62118530.2734375, 63583374.0234375], [66146850.5859375, 66268920.8984375], [68344116.2109375, 68466186.5234375], [69931030.2734375, 70053100.5859375], [70175170.8984375, 70541381.8359375], [74325561.5234375, 75057983.3984375], [75424194.3359375, 75668334.9609375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [121932983.3984375, 122055053.7109375], [122177124.0234375, 122543334.9609375], [122787475.5859375, 123275756.8359375], [123519897.4609375, 124130249.0234375], [124618530.2734375, 125350952.1484375], [125839233.3984375, 134872436.5234375], [134994506.8359375, 135604858.3984375], [136215209.9609375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [146102905.2734375, 147079467.7734375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148788452.1484375], [148910522.4609375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [150741577.1484375, 150985717.7734375], [153427124.0234375, 153549194.3359375], [153671264.6484375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191268920.8984375], [191390991.2109375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [8, Jnn], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [33, Jnn], [34, Jee], [36, Jee], [37, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [83, Jnn], [84, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [91, Jee], [91, Jnn], [92, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [104, Jnn], [105, Jee], [105, Jnn], [106, Jee], [106, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jnn], [117, Jee], [117, Jnn], [120, Jee], [121, Jee], [124, Jee], [124, Jnn], [125, Jee], [125, Jnn], [126, Jee], [126, Jnn], [130, Jee], [131, Jee], [131, Jnn], [135, Jee], [136, Jee], [136, Jnn], [144, Jnn], [145, Jee], [145, Jnn], [155, Jee], [155, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [172, Jee], [175, Jee], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jee], [188, Jnn], [193, Jee], [194, Jee], [196, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [209, Jnn], [212, Jee], [212, Jnn], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [231, Jee], [231, Jnn], [232, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [252, Jee], [252, Jnn], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [268, Jnn], [270, Jee], [272, Jee], [272, Jnn], [281, Jee], [285, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev931+g5bbc1c0 pyuvdata: 3.0.1.dev46+g690c7ce
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 31.88 minutes.