Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1571 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460554/zen.2460554.16925.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1571 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460554/zen.2460554.16925.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
50.550% of waterfall flagged to start. 52.736% of waterfall flagged after flagging z > 5.0 outliers.
53.209% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 2 integrations and 111 channels. Flagging 18 channels previously flagged 25.00% or more. Flagging 110 times previously flagged 10.00% or more.
Flagging an additional 1 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels.
Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. 59.517% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1571 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460554/zen.2460554.16925.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460554/2460554_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460554.169140973, 2460554.2469872553], [2460554.2473227996, 2460554.2474346478], [2460554.247546496, 2460554.247770192], [2460554.24788204, 2460554.248888673], [2460554.250901939, 2460554.251013787], [2460554.251237483, 2460554.2513493313], [2460554.2514611795, 2460554.2515730276], [2460554.251796724, 2460554.251908572], [2460554.25202042, 2460554.2523559644], [2460554.254033686, 2460554.2541455342], [2460554.2557114074, 2460554.2558232555], [2460554.256382496, 2460554.2567180404], [2460554.257389129, 2460554.2575009773], [2460554.2599616353, 2460554.2601853316], [2460554.262422294, 2460554.26264599], [2460554.263540775, 2460554.2637644713], [2460554.264659256, 2460554.2651066487], [2460554.26678437, 2460554.267008066], [2460554.2682383955, 2460554.2683502436], [2460554.2703635097, 2460554.270587206], [2460554.272153079, 2460554.2723767753], [2460554.2727123196, 2460554.2728241677], [2460554.274054497, 2460554.274166345], [2460554.2745018895, 2460554.2746137376], [2460554.275172978, 2460554.2755085225], [2460554.275955915, 2460554.276067763], [2460554.276179611, 2460554.2762914593], [2460554.2765151556, 2460554.2799824467], [2460554.280317991, 2460554.2809890797], [2460554.281100928, 2460554.2833378897], [2460554.283785282, 2460554.2838971303], [2460554.2850156114, 2460554.2851274596], [2460554.2859103964, 2460554.2861340926], [2460554.2862459407, 2460554.286581485], [2460554.2869170294, 2460554.2871407256], [2460554.287364422, 2460554.287588118], [2460554.2883710545, 2460554.2884829026], [2460554.289713232, 2460554.289936928], [2460554.2902724724, 2460554.2903843205], [2460554.2910554092, 2460554.2912791055], [2460554.291950194, 2460554.2921738904], [2460554.2925094347, 2460554.292621283], [2460554.293516068, 2460554.293739764], [2460554.294187156, 2460554.2944108522], [2460554.295081941, 2460554.2954174853], [2460554.2955293334, 2460554.2958648778], [2460554.2966478146, 2460554.297095207], [2460554.2973189033, 2460554.2975425995], [2460554.297989992, 2460554.298213688], [2460554.299332169, 2460554.299555865], [2460554.299667713, 2460554.2998914095], [2460554.3000032576, 2460554.3001151057], [2460554.30045065, 2460554.300562498], [2460554.3007861944, 2460554.3010098906], [2460554.301457283, 2460554.3016809793], [2460554.302352068, 2460554.302463916], [2460554.3030231567, 2460554.303135005], [2460554.3036942454, 2460554.3038060935], [2460554.3040297898, 2460554.304365334], [2460554.3048127266, 2460554.3051482704], [2460554.305483815, 2460554.305595663], [2460554.305819359, 2460554.3059312073], [2460554.3062667516, 2460554.306490448], [2460554.306714144, 2460554.3071615365], [2460554.3073852328, 2460554.307608929], [2460554.307832625, 2460554.3079444733], [2460554.308503714, 2460554.308615562], [2460554.3089511064, 2460554.3091748026], [2460554.3100695875, 2460554.3101814357], [2460554.310964372, 2460554.3116354607], [2460554.3121947013, 2460554.3124183975], [2460554.3125302456, 2460554.312753942], [2460554.312977638, 2460554.3133131824], [2460554.31465536, 2460554.3152146004], [2460554.315885689, 2460554.316333081], [2460554.3165567773, 2460554.3167804736], [2460554.3168923217, 2460554.31700417], [2460554.317339714, 2460554.3176752585], [2460554.318010803, 2460554.318234499], [2460554.3185700434, 2460554.318905588], [2460554.319241132, 2460554.3193529802], [2460554.3194648284, 2460554.3196885246], [2460554.319912221, 2460554.320135917], [2460554.3203596133, 2460554.3204714614], [2460554.3205833095, 2460554.3206951576], [2460554.321030702, 2460554.3213662463], [2460554.3214780944, 2460554.321813639], [2460554.322261031, 2460554.322372879], [2460554.322484727, 2460554.3229321195], [2460554.323379512, 2460554.3237150563], [2460554.324497993, 2460554.3249453856], [2460554.325504626, 2460554.3257283224], [2460554.326511259, 2460554.3267349554], [2460554.3269586517, 2460554.327294196], [2460554.327741588, 2460554.328524525], [2460554.328636373, 2460554.3289719173], [2460554.3290837654, 2460554.3293074616], [2460554.3302022466, 2460554.330425943], [2460554.3309851834, 2460554.3312088796], [2460554.331544424, 2460554.33176812], [2460554.332551057, 2460554.3329984494], [2460554.333222145, 2460554.3334458414], [2460554.3335576896, 2460554.334005082], [2460554.3342287783, 2460554.334899867], [2460554.3352354113, 2460554.335794652], [2460554.3359065, 2460554.3363538925], [2460554.336913133, 2460554.3375842217], [2460554.33769607, 2460554.3382553104], [2460554.338590855, 2460554.340156728], [2460554.341163361, 2460554.3414989053], [2460554.3416107534, 2460554.3426173865], [2460554.3427292346, 2460554.342952931], [2460554.3436240195, 2460554.344295108], [2460554.3447425, 2460554.3449661965], [2460554.3451898927, 2460554.3460846776], [2460554.34653207, 2460554.347315007], [2460554.348545336, 2460554.3487690324], [2460554.349216425, 2460554.349551969], [2460554.350782298, 2460554.3511178424], [2460554.3513415386, 2460554.351677083], [2460554.351900779, 2460554.3521244754], [2460554.3523481716, 2460554.3524600198], [2460554.352683716, 2460554.352795564], [2460554.352907412, 2460554.3531311085], [2460554.3540258934, 2460554.3543614377], [2460554.354696982, 2460554.3551443745], [2460554.3552562227, 2460554.3557036147], [2460554.356039159, 2460554.3564865515], [2460554.357045792, 2460554.3572694883], [2460554.3573813364, 2460554.3576050326], [2460554.357940577, 2460554.3582761213], [2460554.3586116657, 2460554.359841995], [2460554.3606249318, 2460554.361072324], [2460554.362414501, 2460554.3627500455], [2460554.36308559, 2460554.363309286], [2460554.3637566785, 2460554.364092223], [2460554.366217337, 2460554.3664410333], [2460554.3681187546, 2460554.368342451], [2460554.3689016914, 2460554.369349084], [2460554.370579413, 2460554.371250502], [2460554.37136235, 2460554.371586046], [2460554.372928223, 2460554.373599312], [2460554.373934856, 2460554.3741585524], [2460554.374605945, 2460554.374717793], [2460554.3751651854, 2460554.3753888817], [2460554.37550073, 2460554.375612578], [2460554.3760599704, 2460554.376731059], [2460554.3770666034, 2460554.3771784515], [2460554.378856173, 2460554.379079869], [2460554.379862806, 2460554.380981287], [2460554.381204983, 2460554.3813168313], [2460554.3826590087, 2460554.382882705], [2460554.383106401, 2460554.3835537937], [2460554.3846722743, 2460554.385119667], [2460554.386238148, 2460554.386461844], [2460554.387244781, 2460554.3874684772], [2460554.3885869584, 2460554.3888106546], [2460554.389258047, 2460554.389705439], [2460554.3901528316, 2460554.3902646797], [2460554.39261349, 2460554.3939556675], [2460554.394514908, 2460554.3947386043], [2460554.3963044775, 2460554.3982058954], [2460554.3993243766, 2460554.399548073], [2460554.4008902498, 2460554.401113946], [2460554.402008731, 2460554.402120579], [2460554.4027916677, 2460554.40323906], [2460554.40737744, 2460554.4079366806], [2460554.410173643, 2460554.410285491], [2460554.4105091873, 2460554.4108447316], [2460554.411068428, 2460554.411292124], [2460554.4139764784, 2460554.4142001746], [2460554.414423871, 2460554.414647567], [2460554.4162134407, 2460554.416325289], [2460554.417331922, 2460554.4184504026], [2460554.4185622507, 2460554.418674099], [2460554.418785947, 2460554.418897795], [2460554.419680732, 2460554.419904428], [2460554.420687365, 2460554.4212466055], [2460554.4221413904, 2460554.4223650866], [2460554.425049441, 2460554.425161289], [2460554.4272864033, 2460554.4275100995], [2460554.4276219476, 2460554.428181188], [2460554.4286285806, 2460554.4288522764], [2460554.4317603274, 2460554.432095872], [2460554.4327669605, 2460554.4328788086], [2460554.434220986, 2460554.4344446817], [2460554.4363460997, 2460554.436681644], [2460554.436793492, 2460554.4370171884], [2460554.4382475177, 2460554.438359366], [2460554.440037087, 2460554.4402607833], [2460554.4403726314, 2460554.4404844795], [2460554.440931872, 2460554.442050353], [2460554.4423858975, 2460554.4424977456], [2460554.442721442, 2460554.44283329], [2460554.4443991636, 2460554.4457413405], [2460554.446188733, 2460554.446412429], [2460554.4466361254, 2460554.4467479736], [2460554.44697167, 2460554.447195366], [2460554.447978303, 2460554.448201999], [2460554.4486493915, 2460554.448984936], [2460554.4494323283, 2460554.4496560246], [2460554.4497678727, 2460554.449991569], [2460554.4503271133, 2460554.4506626576], [2460554.450998202, 2460554.4513337463], [2460554.45166929, 2460554.4518929864], [2460554.4549128856, 2460554.4550247337], [2460554.4556958224, 2460554.4559195186], [2460554.4572616955, 2460554.4574853918], [2460554.458715721, 2460554.458827569], [2460554.4633014933, 2460554.4635251896], [2460554.465985848, 2460554.466097696], [2460554.4662095443, 2460554.4675517217], [2460554.469341291, 2460554.4706834685], [2460554.4738152153, 2460554.4741507596], [2460554.4748218483, 2460554.4750455446], [2460554.4770588106, 2460554.4771706588], [2460554.4819801273, 2460554.4820919754], [2460554.4832104566, 2460554.483434153], [2460554.4843289377, 2460554.484440786], [2460554.4885791657, 2460554.488802862], [2460554.48891471, 2460554.4891384062], [2460554.494171571, 2460554.494283419], [2460554.4979744065, 2460554.498309951], [2460554.5097184577, 2460554.509830306], [2460554.5124028125, 2460554.5125146606], [2460554.515199015, 2460554.515422711], [2460554.5160938, 2460554.516317496], [2460554.5174359772, 2460554.5175478254], [2460554.5176596735, 2460554.5177715216], [2460554.518218914, 2460554.518330762], [2460554.519561091, 2460554.519784787]] freq_flags: [[46859741.2109375, 46981811.5234375], [47103881.8359375, 48202514.6484375], [48446655.2734375, 48568725.5859375], [49911499.0234375, 50155639.6484375], [54061889.6484375, 55038452.1484375], [59921264.6484375, 60043334.9609375], [62240600.5859375, 63339233.3984375], [69931030.2734375, 70053100.5859375], [70175170.8984375, 70541381.8359375], [74325561.5234375, 75057983.3984375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [113632202.1484375, 113754272.4609375], [116439819.3359375, 116561889.6484375], [121810913.0859375, 124252319.3359375], [124496459.9609375, 125350952.1484375], [125717163.0859375, 134872436.5234375], [134994506.8359375, 135116577.1484375], [135238647.4609375, 135604858.3984375], [136215209.9609375, 136337280.2734375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [144882202.1484375, 145004272.4609375], [145736694.3359375, 145980834.9609375], [146713256.8359375, 146835327.1484375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153793334.9609375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [155258178.7109375, 155380249.0234375], [157577514.6484375, 157699584.9609375], [159164428.7109375, 159286499.0234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220565795.8984375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [20, Jee], [21, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [33, Jnn], [34, Jee], [36, Jee], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [82, Jee], [82, Jnn], [83, Jnn], [84, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [91, Jee], [91, Jnn], [92, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [103, Jnn], [104, Jnn], [105, Jee], [105, Jnn], [106, Jee], [106, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jnn], [111, Jee], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [120, Jee], [121, Jee], [124, Jee], [124, Jnn], [125, Jee], [125, Jnn], [126, Jee], [126, Jnn], [130, Jee], [131, Jee], [131, Jnn], [135, Jee], [136, Jee], [136, Jnn], [144, Jee], [145, Jee], [145, Jnn], [155, Jee], [155, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [172, Jee], [175, Jee], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [181, Jnn], [182, Jee], [184, Jee], [188, Jee], [188, Jnn], [193, Jee], [194, Jee], [196, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [209, Jnn], [212, Jee], [212, Jnn], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [231, Jee], [231, Jnn], [232, Jee], [233, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [252, Jee], [252, Jnn], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [266, Jee], [267, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [285, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev931+g5bbc1c0 pyuvdata: 3.0.1.dev46+g690c7ce
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 32.92 minutes.