Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 2293 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460566/zen.2460566.16929.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 2293 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460566/zen.2460566.16929.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
30.085% of waterfall flagged to start. 32.878% of waterfall flagged after flagging z > 5.0 outliers.
33.484% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 5 integrations and 6 channels. Flagging 61 channels previously flagged 25.00% or more. Flagging 521 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 43.699% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 2293 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460566/zen.2460566.16929.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460566/2460566_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460566.169179438, 2460566.181370882], [2460566.181706426, 2460566.1819301224], [2460566.1820419705, 2460566.1821538187], [2460566.182265667, 2460566.182377515], [2460566.1832723, 2460566.183384148], [2460566.1843907805, 2460566.1845026286], [2460566.1862921985, 2460566.1883054646], [2460566.1899831863, 2460566.19624668], [2460566.1966940723, 2460566.1970296167], [2460566.1975888573, 2460566.1978125535], [2460566.198259946, 2460566.1996021233], [2460566.1998258196, 2460566.20038506], [2460566.2009443007, 2460566.201167997], [2460566.203740503, 2460566.2038523513], [2460566.2051945287, 2460566.205418225], [2460566.205530073, 2460566.2057537693], [2460566.2058656174, 2460566.20631301], [2460566.206424858, 2460566.207095946], [2460566.2083262755, 2460566.2085499717], [2460566.209892149, 2460566.2101158453], [2460566.2111224784, 2460566.2120172633], [2460566.2123528076, 2460566.2128001996], [2460566.21335944, 2460566.2172741243], [2460566.2174978205, 2460566.218280757], [2460566.218392605, 2460566.21928739], [2460566.219399238, 2460566.2237613145], [2460566.2239850103, 2460566.2240968584], [2460566.2271167575, 2460566.22756415], [2460566.227675998, 2460566.2281233906], [2460566.2304722006, 2460566.2305840487], [2460566.231926226, 2460566.232038074], [2460566.2322617704, 2460566.2324854666], [2460566.234834277, 2460566.235281669], [2460566.2365119983, 2460566.2366238465], [2460566.2378541757, 2460566.238077872], [2460566.2385252644, 2460566.2386371125], [2460566.2405385305, 2460566.2407622263], [2460566.2412096187, 2460566.242551796], [2460566.2426636443, 2460566.2429991886], [2460566.2455716953, 2460566.2472494165], [2460566.2483678977, 2460566.249486379], [2460566.2524922965, 2460566.2526041446], [2460566.253834474, 2460566.255959588], [2460566.2565188287, 2460566.256742525], [2460566.2571899174, 2460566.2573017655], [2460566.2576373094, 2460566.2577491575], [2460566.258084702, 2460566.2585320943], [2460566.259091335, 2460566.2597624236], [2460566.2606572085, 2460566.2607690566], [2460566.2640126515, 2460566.2641244996], [2460566.264571892, 2460566.2650192846], [2460566.2679273356, 2460566.268151032], [2460566.268933968, 2460566.269716905], [2460566.2710590824, 2460566.2713946267], [2460566.271506475, 2460566.271618323], [2460566.2720657154, 2460566.2721775635], [2460566.273743437, 2460566.2738552853], [2460566.2746382216, 2460566.274973766], [2460566.278664754, 2460566.27888845], [2460566.2791121462, 2460566.2793358425], [2460566.286605969, 2460566.286717817], [2460566.2868296653, 2460566.2870533615], [2460566.289402172, 2460566.28951402], [2460566.2900732607, 2460566.290185109], [2460566.2909680456, 2460566.2910798937], [2460566.291750982, 2460566.29186283], [2460566.291974678, 2460566.2920865263], [2460566.2921983744, 2460566.2923102225], [2460566.2924220706, 2460566.2925339187], [2460566.292645767, 2460566.292757615], [2460566.2934287037, 2460566.293540552], [2460566.2939879443, 2460566.2940997924], [2460566.294547185, 2460566.294659033], [2460566.299915894, 2460566.300027742], [2460566.308640046, 2460566.3089755904], [2460566.309534831, 2460566.309646679], [2460566.3099822234, 2460566.310429616], [2460566.3130021226, 2460566.3131139707], [2460566.3145679957, 2460566.314679844], [2460566.31490354, 2460566.315015388], [2460566.315798325, 2460566.315910173], [2460566.3208314897, 2460566.321055186], [2460566.321278882, 2460566.3213907303], [2460566.3222855153, 2460566.3223973634], [2460566.3225092115, 2460566.3226210596], [2460566.3227329077, 2460566.322844756], [2460566.322956604, 2460566.323068452], [2460566.3232921483, 2460566.3237395408], [2460566.323851389, 2460566.323963237], [2460566.3242987813, 2460566.3244106295], [2460566.32496987, 2460566.325081718], [2460566.3256409583, 2460566.3259765026], [2460566.3260883507, 2460566.3267594394], [2460566.3268712875, 2460566.3277660725], [2460566.3287727055, 2460566.32910825], [2460566.329443794, 2460566.3296674904], [2460566.330003035, 2460566.330338579], [2460566.3304504273, 2460566.3305622754], [2460566.330785971, 2460566.3308978193], [2460566.3310096674, 2460566.3311215155], [2460566.3312333636, 2460566.3313452117], [2460566.33145706, 2460566.331568908], [2460566.331792604, 2460566.3319044523], [2460566.3321281485, 2460566.3322399966], [2460566.3329110853, 2460566.333694022], [2460566.3366020727, 2460566.336713921], [2460566.3376087057, 2460566.337832402], [2460566.3391745794, 2460566.3392864275], [2460566.3404049086, 2460566.3405167568], [2460566.3428655667, 2460566.342977415], [2460566.343984048, 2460566.344095896], [2460566.3457736177, 2460566.345885466], [2460566.3517015674, 2460566.3518134155], [2460566.3519252636, 2460566.3520371118], [2460566.353602985, 2460566.355504403], [2460566.355616251, 2460566.3560636435], [2460566.356511036, 2460566.356622884], [2460566.3572939727, 2460566.357517669], [2460566.362998226, 2460566.363669315], [2460566.3675839985, 2460566.3676958466], [2460566.367919543, 2460566.368031391], [2460566.36926172, 2460566.3693735683], [2460566.370603897, 2460566.3707157453], [2460566.3708275934, 2460566.3709394415], [2460566.371274986, 2460566.371386834], [2460566.3720579227, 2460566.372281619], [2460566.373176404, 2460566.3734001], [2460566.3761963025, 2460566.3764199987], [2460566.379775442, 2460566.3798872903], [2460566.3808939233, 2460566.3810057715], [2460566.3843612145, 2460566.3844730626], [2460566.386598177, 2460566.386710025], [2460566.386821873, 2460566.386933721], [2460566.387045569, 2460566.387157417], [2460566.387269265, 2460566.387381113], [2460566.3876048094, 2460566.3878285056], [2460566.388052202, 2460566.38816405], [2460566.3884995943, 2460566.3886114424], [2460566.3887232905, 2460566.3888351386], [2460566.389170683, 2460566.3897299236], [2460566.3898417717, 2460566.3929735185], [2460566.3930853666, 2460566.395322329], [2460566.395434177, 2460566.4042701772], [2460566.4044938735, 2460566.4046057216], [2460566.4047175697, 2460566.404829418], [2460566.404941266, 2460566.4056123546], [2460566.405836051, 2460566.40706638], [2460566.4071782283, 2460566.4117640005], [2460566.4118758487, 2460566.4124350892], [2460566.4125469374, 2460566.4134417223], [2460566.4137772666, 2460566.416685317], [2460566.4167971653, 2460566.417356406], [2460566.417580102, 2460566.418474887], [2460566.418586735, 2460566.419369672], [2460566.419593368, 2460566.420264457], [2460566.420376305, 2460566.4208236975], [2460566.420935545, 2460566.421047393], [2460566.4212710895, 2460566.4213829376], [2460566.4214947857, 2460566.421606634], [2460566.4220540263, 2460566.422725115], [2460566.4230606593, 2460566.4240672924], [2460566.4244028367, 2460566.4259687103], [2460566.4265279504, 2460566.43603504], [2460566.436146888, 2460566.4364824323], [2460566.4365942804, 2460566.4367061285], [2460566.4368179766, 2460566.4369298248], [2460566.437153521, 2460566.4374890653], [2460566.437824609, 2460566.4379364573], [2460566.4410682046, 2460566.4411800527], [2460566.4430814707, 2460566.443193319], [2460566.446548762, 2460566.44666061], [2460566.4513582303, 2460566.4514700784], [2460566.451917471, 2460566.452029319], [2460566.452141167, 2460566.4523648634], [2460566.4579572687, 2460566.458069117], [2460566.458292813, 2460566.458404661], [2460566.461760104, 2460566.4618719523], [2460566.4620956485, 2460566.4622074966], [2460566.462431193, 2460566.462543041], [2460566.463437826, 2460566.463549674], [2460566.4663458765, 2460566.4665695727], [2460566.4727212186, 2460566.4728330667], [2460566.473280459, 2460566.4733923073], [2460566.4735041554, 2460566.4737278516], [2460566.475070029, 2460566.475181877], [2460566.4757411177, 2460566.475852966], [2460566.4766359027, 2460566.476747751], [2460566.4798794976, 2460566.4799913457], [2460566.481109827, 2460566.481221675], [2460566.4815572193, 2460566.4816690674], [2460566.482228308, 2460566.482340156], [2460566.4831230924, 2460566.4832349406], [2460566.4833467887, 2460566.483458637], [2460566.483570485, 2460566.483682333], [2460566.48446527, 2460566.484688966], [2460566.4853600548, 2460566.485471903], [2460566.486478536, 2460566.4869259284], [2460566.487485169, 2460566.487597017], [2460566.4892747384, 2460566.489722131], [2460566.489833979, 2460566.490057675], [2460566.4903932195, 2460566.490840612], [2460566.491735397, 2460566.491847245], [2460566.491959093, 2460566.4920709413], [2460566.4921827894, 2460566.4922946375], [2460566.4947552956, 2460566.4948671437], [2460566.4956500805, 2460566.4957619286], [2460566.4958737767, 2460566.495985625], [2460566.502249119, 2460566.502360967], [2460566.5048216255, 2460566.5049334737], [2460566.5079533723, 2460566.5080652204], [2460566.508736309, 2460566.5088481572], [2460566.5089600054, 2460566.5090718535], [2460566.509407398, 2460566.509519246], [2460566.510749575, 2460566.510973271], [2460566.5125391446, 2460566.5126509927], [2460566.5144405626, 2460566.5145524107], [2460566.514999803, 2460566.5151116513], [2460566.5165656763, 2460566.5167893725], [2460566.520032968, 2460566.520144816], [2460566.5205922085, 2460566.5207040566], [2460566.5217106896, 2460566.5218225378], [2460566.522046234, 2460566.522158082], [2460566.522717322, 2460566.5228291703], [2460566.5247305883, 2460566.5250661327], [2460566.5258490695, 2460566.5260727657], [2460566.5299874493, 2460566.5300992974], [2460566.53054669, 2460566.530770386], [2460566.5331191965, 2460566.533342893], [2460566.533902133, 2460566.534013981], [2460566.537816817, 2460566.537928665], [2460566.5382642094, 2460566.5383760575], [2460566.5406130194, 2460566.5407248675], [2460566.5428499817, 2460566.54296183], [2460566.543185526, 2460566.543297374], [2460566.5434092223, 2460566.5435210704], [2460566.5436329185, 2460566.543968463], [2460566.5444158553, 2460566.544751399], [2460566.5448632473, 2460566.5449750954], [2460566.5458698804, 2460566.5459817285], [2460566.5460935766, 2460566.5462054247], [2460566.5467646653, 2460566.5469883615], [2460566.547435754, 2460566.54765945], [2460566.5477712983, 2460566.5479949946], [2460566.548218691, 2460566.548330539], [2460566.548442387, 2460566.548554235], [2460566.5496727163, 2460566.5497845644], [2460566.5500082606, 2460566.550231957], [2460566.5511267413, 2460566.5513504376], [2460566.5542584886, 2460566.5543703367], [2460566.557054691, 2460566.557166539], [2460566.564101122, 2460566.56421297], [2460566.5664499323, 2460566.5665617804], [2460566.571259401, 2460566.571371249], [2460566.5721541857, 2460566.572266034], [2460566.5727134263, 2460566.5728252744], [2460566.574950388, 2460566.5751740844], [2460566.5772991986, 2460566.577522895], [2460566.580207249, 2460566.5803190973], [2460566.580990186, 2460566.5814375784], [2460566.582891604, 2460566.583003452], [2460566.586135199, 2460566.586247047], [2460566.589714338, 2460566.589826186], [2460566.5909446673, 2460566.5910565155], [2460566.595977832, 2460566.59608968], [2460566.5964252246, 2460566.5965370727], [2460566.596872617, 2460566.596984465], [2460566.5983266425, 2460566.5984384906], [2460566.6001162124, 2460566.6002280605], [2460566.600563605, 2460566.601010997], [2460566.601346541, 2460566.6014583893], [2460566.602241326, 2460566.6024650224], [2460566.6052612253, 2460566.6053730734], [2460566.6088403645, 2460566.6089522126], [2460566.611077327, 2460566.611189175], [2460566.617452669, 2460566.617676365], [2460566.619913327, 2460566.620025175], [2460566.624387251, 2460566.6246109474], [2460566.6256175805, 2460566.6257294286], [2460566.6258412767, 2460566.626288669], [2460566.6283019353, 2460566.6285256315], [2460566.629308568, 2460566.629420416], [2460566.6317692264, 2460566.6318810745], [2460566.6333351, 2460566.6335587963], [2460566.6337824925, 2460566.6338943406], [2460566.635907606, 2460566.6360194543], [2460566.6363549987, 2460566.6369142393], [2460566.6372497836, 2460566.63747348], [2460566.6380327204, 2460566.6381445685], [2460566.638591961, 2460566.638703809], [2460566.639710442, 2460566.6402696827], [2460566.6403815304, 2460566.640940771], [2460566.641164467, 2460566.6413881634], [2460566.642842189, 2460566.6434014295], [2460566.6451909994, 2460566.6453028475], [2460566.646421328, 2460566.6465331763], [2460566.650000468, 2460566.650112316], [2460566.6519018854, 2460566.6520137335], [2460566.6521255816, 2460566.6522374297], [2460566.65458624, 2460566.6548099364], [2460566.655481025, 2460566.655592873], [2460566.6572705945, 2460566.6573824426], [2460566.657829835, 2460566.657941683], [2460566.6589483162, 2460566.6590601644], [2460566.6610734304, 2460566.6611852786], [2460566.6621919116, 2460566.662415608], [2460566.6636459366, 2460566.6637577848], [2460566.6645407216, 2460566.664988114], [2460566.665771051, 2460566.665994747], [2460566.6662184433, 2460566.6663302914], [2460566.6664421395, 2460566.6665539877], [2460566.667896165, 2460566.668008013], [2460566.6683435575, 2460566.6684554056], [2460566.6699094307, 2460566.670021279], [2460566.673153026, 2460566.673264874], [2460566.674383355, 2460566.674607051], [2460566.6748307473, 2460566.6750544435], [2460566.6759492285, 2460566.676284773], [2460566.676396621, 2460566.676620317], [2460566.6770677096, 2460566.677291406], [2460566.677515102, 2460566.67762695], [2460566.6780743427, 2460566.678409887], [2460566.6803113045, 2460566.6804231526], [2460566.680982393, 2460566.6812060894], [2460566.6823245706, 2460566.682548267], [2460566.6832193555, 2460566.6833312036], [2460566.683666748, 2460566.683778596], [2460566.683890444, 2460566.6840022923], [2460566.684785229, 2460566.6848970773]] freq_flags: [[46859741.2109375, 46981811.5234375], [47103881.8359375, 47592163.0859375], [47714233.3984375, 48202514.6484375], [48324584.9609375, 53085327.1484375], [53939819.3359375, 55038452.1484375], [56381225.5859375, 56503295.8984375], [59432983.3984375, 59555053.7109375], [59677124.0234375, 60165405.2734375], [61874389.6484375, 62850952.1484375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124740600.5859375, 125350952.1484375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [30, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [45, Jnn], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [50, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jnn], [69, Jee], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jnn], [82, Jnn], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [99, Jnn], [100, Jee], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [123, Jnn], [125, Jee], [125, Jnn], [126, Jnn], [127, Jee], [127, Jnn], [130, Jee], [130, Jnn], [131, Jee], [135, Jee], [135, Jnn], [136, Jee], [136, Jnn], [142, Jnn], [143, Jnn], [144, Jee], [144, Jnn], [145, Jee], [145, Jnn], [146, Jee], [146, Jnn], [151, Jee], [151, Jnn], [152, Jee], [152, Jnn], [153, Jee], [153, Jnn], [154, Jee], [154, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [165, Jnn], [166, Jee], [166, Jnn], [170, Jee], [171, Jee], [171, Jnn], [172, Jee], [172, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jnn], [194, Jee], [196, Jee], [196, Jnn], [197, Jee], [197, Jnn], [198, Jee], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [206, Jee], [207, Jnn], [208, Jnn], [209, Jnn], [211, Jee], [211, Jnn], [212, Jnn], [213, Jee], [215, Jnn], [216, Jee], [218, Jnn], [226, Jnn], [227, Jee], [227, Jnn], [228, Jee], [228, Jnn], [229, Jee], [229, Jnn], [231, Jee], [231, Jnn], [232, Jee], [233, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [244, Jee], [244, Jnn], [245, Jee], [245, Jnn], [246, Jee], [246, Jnn], [250, Jee], [250, Jnn], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [268, Jnn], [269, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 49.67 minutes.