Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1943 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460567/zen.2460567.25244.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1943 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460567/zen.2460567.25244.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
27.546% of waterfall flagged to start. 29.631% of waterfall flagged after flagging z > 5.0 outliers.
30.268% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 8 channels. Flagging 13 channels previously flagged 25.00% or more. Flagging 444 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 1 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.211% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1943 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460567/zen.2460567.25244.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460567/2460567_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460567.257021301, 2460567.257133149], [2460567.258810871, 2460567.258922719], [2460567.2595938076, 2460567.259929352], [2460567.2602648963, 2460567.2606004407], [2460567.260712289, 2460567.260824137], [2460567.260935985, 2460567.261047833], [2460567.2611596812, 2460567.261718922], [2460567.26183077, 2460567.261942618], [2460567.262054466, 2460567.2621663143], [2460567.2622781624, 2460567.263172947], [2460567.263396643, 2460567.268653504], [2460567.268765352, 2460567.2691008965], [2460567.2692127447, 2460567.269548289], [2460567.270443074, 2460567.270554922], [2460567.27066677, 2460567.2707786183], [2460567.271673403, 2460567.2717852513], [2460567.2727918844, 2460567.2729037325], [2460567.2743577575, 2460567.275028846], [2460567.275699935, 2460567.275923631], [2460567.2764828717, 2460567.276706568], [2460567.278496138, 2460567.278831682], [2460567.2805094034, 2460567.2806212516], [2460567.280956796, 2460567.281180492], [2460567.281963429, 2460567.282187125], [2460567.2827463658, 2460567.2833056063], [2460567.284759632, 2460567.284983328], [2460567.286101809, 2460567.286213657], [2460567.286437353, 2460567.2865492012], [2460567.2866610494, 2460567.2868847456], [2460567.2875558343, 2460567.2878913786], [2460567.290687581, 2460567.290799429], [2460567.2909112773, 2460567.2911349735], [2460567.291694214, 2460567.291806062], [2460567.292365303, 2460567.292477151], [2460567.292588999, 2460567.292700847], [2460567.294602265, 2460567.294714113], [2460567.2948259613, 2460567.2949378095], [2460567.2950496576, 2460567.2951615057], [2460567.295608898, 2460567.2958325944], [2460567.2966155307, 2460567.296727379], [2460567.2971747713, 2460567.2973984675], [2460567.2984051006, 2460567.298628797], [2460567.2995235818, 2460567.299747278], [2460567.300865759, 2460567.3009776073], [2460567.3010894554, 2460567.3013131516], [2460567.3028790248, 2460567.302990873], [2460567.303997506, 2460567.3043330503], [2460567.305227835, 2460567.3054515314], [2460567.306793709, 2460567.307017405], [2460567.3074647975, 2460567.3075766456], [2460567.3100373037, 2460567.310149152], [2460567.310261, 2460567.310372848], [2460567.3107083924, 2460567.3110439368], [2460567.311379481, 2460567.3116031773], [2460567.313504595, 2460567.313728291], [2460567.3140638354, 2460567.31439938], [2460567.314734924, 2460567.3148467722], [2460567.3152941647, 2460567.315517861], [2460567.315741557, 2460567.3159652534], [2460567.316412646, 2460567.31674819], [2460567.317531127, 2460567.3179785195], [2460567.318425912, 2460567.3187614563], [2460567.318873304, 2460567.321669507], [2460567.321781355, 2460567.322564292], [2460567.322787988, 2460567.3264789754], [2460567.3265908235, 2460567.3274856084], [2460567.3275974565, 2460567.327933001], [2460567.328156697, 2460567.329051482], [2460567.3294988745, 2460567.3296107226], [2460567.3297225707, 2460567.329834419], [2460567.329946267, 2460567.330058115], [2460567.3301699627, 2460567.3309528995], [2460567.331400292, 2460567.3317358363], [2460567.3329661656, 2460567.333189862], [2460567.3338609505, 2460567.334308343], [2460567.3359860643, 2460567.3360979124], [2460567.3364334567, 2460567.336657153], [2460567.337551938, 2460567.337775634], [2460567.3382230266, 2460567.3383348747], [2460567.338446723, 2460567.338782267], [2460567.3392296596, 2460567.3400125965], [2460567.3407955333, 2460567.3411310776], [2460567.3422495583, 2460567.3423614064], [2460567.3425851027, 2460567.343032495], [2460567.343815432, 2460567.344039128], [2460567.3451576093, 2460567.345828698], [2460567.3462760905, 2460567.3464997867], [2460567.346611635, 2460567.346947179], [2460567.3475064193, 2460567.348177508], [2460567.348289356, 2460567.3487367486], [2460567.348960445, 2460567.349184141], [2460567.349295989, 2460567.3495196854], [2460567.3497433816, 2460567.3514211033], [2460567.3516447996, 2460567.352092192], [2460567.3523158883, 2460567.3524277364], [2460567.352539584, 2460567.352651432], [2460567.3527632803, 2460567.353546217], [2460567.3538817614, 2460567.354217306], [2460567.3547765464, 2460567.355335787], [2460567.3558950275, 2460567.35634242], [2460567.357125357, 2460567.357460901], [2460567.35813199, 2460567.358579382], [2460567.3591386224, 2460567.359809711], [2460567.3611518885, 2460567.3613755847], [2460567.362382218, 2460567.362605914], [2460567.363612547, 2460567.3642836353], [2460567.3645073315, 2460567.364954724], [2460567.3652902683, 2460567.365737661], [2460567.365849509, 2460567.3661850533], [2460567.3666324457, 2460567.366856142], [2460567.3675272306, 2460567.367750927], [2460567.3681983193, 2460567.3684220156], [2460567.368645712, 2460567.368981256], [2460567.3693168005, 2460567.3698760406], [2460567.3706589774, 2460567.3714419142], [2460567.3727840916, 2460567.373231484], [2460567.374126269, 2460567.374238117], [2460567.3744618134, 2460567.375356598], [2460567.3770343196, 2460567.377369864], [2460567.378600193, 2460567.37938313], [2460567.381843788, 2460567.381955636], [2460567.3820674843, 2460567.3824030287], [2460567.382626725, 2460567.3829622692], [2460567.3830741174, 2460567.38352151], [2460567.384751839, 2460567.384863687], [2460567.3851992316, 2460567.387883586], [2460567.387995434, 2460567.3883309783], [2460567.3886665227, 2460567.4009698145], [2460567.4010816626, 2460567.401305359], [2460567.4027593844, 2460567.403206777], [2460567.4033186245, 2460567.4096939666], [2460567.4098058147, 2460567.4104769034], [2460567.4107005997, 2460567.412154625], [2460567.4123783214, 2460567.4127138657], [2460567.412937562, 2460567.4136086507], [2460567.413720499, 2460567.4141678913], [2460567.4147271314, 2460567.4149508276], [2460567.415174524, 2460567.415286372], [2460567.41539822, 2460567.415510068], [2460567.4156219163, 2460567.4157337644], [2460567.4158456125, 2460567.4159574606], [2460567.4160693088, 2460567.416181157], [2460567.416516701, 2460567.4166285493], [2460567.417075942, 2460567.41718779], [2460567.417299638, 2460567.417411486], [2460567.4175233343, 2460567.4176351824], [2460567.4177470305, 2460567.4178588786], [2460567.418082575, 2460567.418306271], [2460567.4185299673, 2460567.4186418154], [2460567.4195366004, 2460567.4196484485], [2460567.420543233, 2460567.420655081], [2460567.4228920434, 2460567.4230038915], [2460567.42367498, 2460567.4237868283], [2460567.424457917, 2460567.424681613], [2460567.4280370562, 2460567.4281489043], [2460567.4326228285, 2460567.4328465248], [2460567.4337413097, 2460567.433853158], [2460567.44257731, 2460567.442689158], [2460567.4429128543, 2460567.4430247024], [2460567.4462682977, 2460567.446491994], [2460567.453985817, 2460567.454209513], [2460567.455887235, 2460567.456110931], [2460567.456222779, 2460567.4563346272], [2460567.4564464753, 2460567.4565583235], [2460567.4574531084, 2460567.4576768046], [2460567.4577886527, 2460567.458124197], [2460567.460473007, 2460567.460584855], [2460567.4629336656, 2460567.4630455137], [2460567.465506172, 2460567.46561802], [2460567.4680786785, 2460567.4683023747], [2460567.4699800964, 2460567.470539337], [2460567.4726644508, 2460567.472776299], [2460567.477026527, 2460567.477138375], [2460567.4778094636, 2460567.47803316], [2460567.4808293628, 2460567.481053059], [2460567.491566781, 2460567.491678629], [2460567.4921260215, 2460567.4922378697], [2460567.494139287, 2460567.4942511353], [2460567.504541161, 2460567.504653009], [2460567.5162852122, 2460567.5165089085], [2460567.5205354406, 2460567.5206472888], [2460567.520870985, 2460567.520982833], [2460567.525121213, 2460567.5254567573], [2460567.5255686054, 2460567.5257923016], [2460567.526239694, 2460567.5265752384], [2460567.5280292635, 2460567.5281411116], [2460567.530266226, 2460567.530378074], [2460567.5342927575, 2460567.5345164537], [2460567.5373126566, 2460567.537536353], [2460567.5395496185, 2460567.5396614666], [2460567.5448064795, 2460567.5449183276], [2460567.545477568, 2460567.5455894163], [2460567.5478263786, 2460567.5479382267], [2460567.5484974673, 2460567.5488330116], [2460567.5561031383, 2460567.5565505307], [2460567.5575571638, 2460567.557669012], [2460567.558675645, 2460567.558899341], [2460567.5624784804, 2460567.5625903285], [2460567.5628140247, 2460567.562925873], [2460567.5686301263, 2460567.5687419744], [2460567.573663291, 2460567.5738869873], [2460567.5864139753, 2460567.5866376716], [2460567.587085064, 2460567.5874206084], [2460567.588203545, 2460567.5883153933], [2460567.5916708363, 2460567.5918945326], [2460567.5940196468, 2460567.594243343], [2460567.5961447605, 2460567.5963684567], [2460567.6002831403, 2460567.6006186847], [2460567.600842381, 2460567.601066077], [2460567.6011779252, 2460567.6012897734], [2460567.6022964064, 2460567.6024082545], [2460567.604645217, 2460567.604980761], [2460567.6050926093, 2460567.6052044574], [2460567.6053163055, 2460567.60621109], [2460567.606994027, 2460567.607105875], [2460567.608112508, 2460567.608224356], [2460567.6094546854, 2460567.6095665335], [2460567.609902078, 2460567.6106850146], [2460567.6120271916, 2460567.6121390397], [2460567.612250888, 2460567.612362736], [2460567.61448785, 2460567.6156063313], [2460567.6166129643, 2460567.6167248124], [2460567.6199684073, 2460567.6200802554], [2460567.6208631922, 2460567.6209750404], [2460567.6223172178, 2460567.622429066], [2460567.6227646098, 2460567.623100154], [2460567.6243304834, 2460567.6244423315], [2460567.6246660277, 2460567.625001572], [2460567.628021471, 2460567.6281333193], [2460567.628468863, 2460567.6286925594], [2460567.629139952, 2460567.6294754962], [2460567.631376914, 2460567.6316006104], [2460567.6339494204, 2460567.6340612685], [2460567.642785421, 2460567.6431209655], [2460567.6440157504, 2460567.6442394466], [2460567.6450223834, 2460567.6452460797], [2460567.646140864, 2460567.6465882566], [2460567.6473711934, 2460567.6475948896], [2460567.6484896746, 2460567.6491607632], [2460567.649720004, 2460567.6499437], [2460567.651174029, 2460567.651397725], [2460567.652068814, 2460567.652180662], [2460567.6538583837, 2460567.653970232], [2460567.6557598016, 2460567.656095346], [2460567.656207194, 2460567.656319042], [2460567.6578849154, 2460567.6581086116], [2460567.661352207, 2460567.661575903], [2460567.6634773207, 2460567.663589169], [2460567.663701017, 2460567.663924713], [2460567.6661616755, 2460567.6663853717], [2460567.66649722, 2460567.666609068], [2460567.6670564604, 2460567.6671683085], [2460567.668063093, 2460567.668286789], [2460567.6686223336, 2460567.668957878], [2460567.669181574, 2460567.6695171185], [2460567.669852663, 2460567.670076359], [2460567.6704119034, 2460567.6706355996], [2460567.670971144, 2460567.67119484], [2460567.671754081, 2460567.6726488657], [2460567.6757806125, 2460567.6758924606], [2460567.6760043087, 2460567.6765635493], [2460567.6792479036, 2460567.6793597518], [2460567.6855113977, 2460567.685623246]] freq_flags: [[49911499.0234375, 50033569.3359375], [54183959.9609375, 54794311.5234375], [60287475.5859375, 60409545.8984375], [62240600.5859375, 63095092.7734375], [69931030.2734375, 70053100.5859375], [85433959.9609375, 85800170.8984375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112411499.0234375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124496459.9609375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153671264.6484375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [159164428.7109375, 159286499.0234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [231063842.7734375, 231185913.0859375]] ex_ants: [[4, Jnn], [8, Jee], [8, Jnn], [9, Jee], [10, Jee], [10, Jnn], [15, Jnn], [18, Jee], [18, Jnn], [19, Jee], [19, Jnn], [20, Jee], [20, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [50, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jnn], [69, Jee], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jnn], [82, Jnn], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [116, Jnn], [117, Jnn], [120, Jee], [121, Jee], [121, Jnn], [122, Jnn], [123, Jnn], [127, Jnn], [130, Jee], [130, Jnn], [131, Jee], [135, Jnn], [136, Jee], [136, Jnn], [142, Jnn], [144, Jnn], [145, Jnn], [146, Jnn], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [166, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [193, Jee], [194, Jee], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jnn], [216, Jee], [218, Jnn], [227, Jee], [231, Jee], [231, Jnn], [232, Jee], [233, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [250, Jnn], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jnn], [266, Jee], [266, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 42.44 minutes.