Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1944 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460568/zen.2460568.25239.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1944 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460568/zen.2460568.25239.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
20.247% of waterfall flagged to start. 28.929% of waterfall flagged after flagging z > 5.0 outliers.
30.021% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 76 channels. Flagging 173 channels previously flagged 25.00% or more. Flagging 486 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels.
Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. 45.617% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1944 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460568/zen.2460568.25239.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460568/2460568_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460568.2680471186, 2460568.2681589667], [2460568.2872849926, 2460568.2873968408], [2460568.3155825636, 2460568.3156944118], [2460568.321063121, 2460568.321174969], [2460568.3215105133, 2460568.3216223614], [2460568.3268792224, 2460568.3269910705], [2460568.327550311, 2460568.327662159], [2460568.3373929444, 2460568.339741755], [2460568.339853603, 2460568.339965451], [2460568.341083932, 2460568.3415313247], [2460568.3419787167, 2460568.342202413], [2460568.3428735016, 2460568.3429853497], [2460568.343320894, 2460568.343432742], [2460568.3436564384, 2460568.344215679], [2460568.3454460083, 2460568.3455578564], [2460568.346340793, 2460568.3464526413], [2460568.3467881856, 2460568.3469000338], [2460568.369828895, 2460568.3699407433], [2460568.3701644395, 2460568.3702762877], [2460568.370499984, 2460568.37072368], [2460568.3728487943, 2460568.3729606424], [2460568.381908491, 2460568.382020339], [2460568.38313882, 2460568.383250668], [2460568.3844809975, 2460568.3847046937], [2460568.3852639343, 2460568.3853757824], [2460568.3857113267, 2460568.385823175], [2460568.385935023, 2460568.386046871], [2460568.3864942635, 2460568.3867179593], [2460568.387165352, 2460568.387500896], [2460568.3878364405, 2460568.388171985], [2460568.388283833, 2460568.388395681], [2460568.388507529, 2460568.389514162], [2460568.3898497066, 2460568.390185251], [2460568.3905207952, 2460568.3909681877], [2460568.391080036, 2460568.392086669], [2460568.392198517, 2460568.392534061], [2460568.392645909, 2460568.3932051496], [2460568.393428846, 2460568.393652542], [2460568.3940999345, 2460568.3943236307], [2460568.394547327, 2460568.395442112], [2460568.39555396, 2460568.396448745], [2460568.396672441, 2460568.3968961374], [2460568.3970079855, 2460568.3971198336], [2460568.397679074, 2460568.3977909223], [2460568.3982383143, 2460568.3985738587], [2460568.398797555, 2460568.3992449474], [2460568.399804188, 2460568.399916036], [2460568.400027884, 2460568.4012582134], [2460568.401705606, 2460568.4024885427], [2460568.402712239, 2460568.402824087], [2460568.402935935, 2460568.4034951758], [2460568.4037188715, 2460568.4038307196], [2460568.404054416, 2460568.404278112], [2460568.40438996, 2460568.4045018083], [2460568.4046136565, 2460568.4048373527], [2460568.404949201, 2460568.405172897], [2460568.4053965933, 2460568.4055084414], [2460568.4057321376, 2460568.405955834], [2460568.4064032263, 2460568.4066269225], [2460568.4067387707, 2460568.406850619], [2460568.407074315, 2460568.407186163], [2460568.4072980112, 2460568.412554872], [2460568.4126667203, 2460568.413449657], [2460568.4136733534, 2460568.4138970496], [2460568.414344442, 2460568.4146799864], [2460568.418706518, 2460568.4188183662], [2460568.4207197838, 2460568.420831632], [2460568.446780393, 2460568.446892241], [2460568.452932039, 2460568.453267583], [2460568.4718343685, 2460568.4719462167], [2460568.483802116, 2460568.483913964], [2460568.4992371546, 2460568.4993490027], [2460568.5012504207, 2460568.501474117], [2460568.5022570537, 2460568.502368902], [2460568.502704446, 2460568.5028162943], [2460568.503375535, 2460568.503599231], [2460568.5041584717, 2460568.50427032], [2460568.5075139147, 2460568.507625763], [2460568.5091916365, 2460568.5093034846], [2460568.509862725, 2460568.5100864214], [2460568.5107575096, 2460568.510981206], [2460568.5117641427, 2460568.511875991], [2460568.5125470795, 2460568.5126589276], [2460568.5137774087, 2460568.514001105], [2460568.5154551305, 2460568.5156788267], [2460568.5170210036, 2460568.517580244], [2460568.5176920923, 2460568.5188105735], [2460568.521271232, 2460568.52138308], [2460568.522613409, 2460568.522725257], [2460568.523396346, 2460568.5248503713], [2460568.5249622194, 2460568.5250740675], [2460568.5252977638, 2460568.525409612], [2460568.525745156, 2460568.5258570043], [2460568.5260807006, 2460568.526304397], [2460568.526528093, 2460568.526639941], [2460568.5268636374, 2460568.5269754855], [2460568.5274228775, 2460568.5276465737], [2460568.527758422, 2460568.52787027], [2460568.5283176624, 2460568.5284295105], [2460568.5294361436, 2460568.529995384], [2460568.5303309285, 2460568.5304427766], [2460568.531002017, 2460568.5311138653], [2460568.5312257134, 2460568.5313375616], [2460568.5322323465, 2460568.5323441946], [2460568.5324560427, 2460568.532567891], [2460568.532679739, 2460568.532791587], [2460568.534021916, 2460568.534133764], [2460568.542410524, 2460568.542522372], [2460568.543081613, 2460568.543417157], [2460568.5435290053, 2460568.5436408534], [2460568.5438645496, 2460568.5444237897], [2460568.544535638, 2460568.544759334], [2460568.5480029294, 2460568.5481147775], [2460568.551022828, 2460568.5512465243], [2460568.5521413093, 2460568.5522531574], [2460568.5531479423, 2460568.5532597904], [2460568.5541545753, 2460568.5542664235], [2460568.5557204485, 2460568.5558322966], [2460568.5559441447, 2460568.556055993], [2460568.556167841, 2460568.556279689], [2460568.5565033853, 2460568.5566152334], [2460568.5568389297, 2460568.557062626], [2460568.557174474, 2460568.557286322], [2460568.55739817, 2460568.558069259], [2460568.558181107, 2460568.558292955], [2460568.5584048033, 2460568.5595232844], [2460568.559858829, 2460568.5603062212], [2460568.5604180694, 2460568.56097731], [2460568.5610891576, 2460568.56153655], [2460568.5618720944, 2460568.5620957906], [2460568.562431335, 2460568.562543183], [2460568.562655031, 2460568.5627668793], [2460568.5631024237, 2460568.56332612], [2460568.563437968, 2460568.563549816], [2460568.564220905, 2460568.564444601], [2460568.564556449, 2460568.5656749303], [2460568.5657867785, 2460568.5660104747], [2460568.566234171, 2460568.566346019], [2460568.566457867, 2460568.5665697153], [2460568.566681563, 2460568.566905259], [2460568.5670171073, 2460568.5672408035], [2460568.5673526516, 2460568.5681355884], [2460568.5683592847, 2460568.568471133], [2460568.568582981, 2460568.568694829], [2460568.568806677, 2460568.5689185252], [2460568.5692540696, 2460568.569477766], [2460568.569589614, 2460568.5701488545], [2460568.5710436394, 2460568.5711554876], [2460568.5719384244, 2460568.5720502725], [2460568.5721621206, 2460568.5726095126], [2460568.5727213607, 2460568.572945057], [2460568.573168753, 2460568.5733924494], [2460568.5737279938, 2460568.57395169], [2460568.574063538, 2460568.574846475], [2460568.574958323, 2460568.5751820193], [2460568.5752938674, 2460568.5754057155], [2460568.5761886523, 2460568.5763005004], [2460568.5771952854, 2460568.5773071335], [2460568.5779782217, 2460568.57809007], [2460568.578201918, 2460568.578313766], [2460568.5789848547, 2460568.579096703], [2460568.579432247, 2460568.580327032], [2460568.5806625765, 2460568.5808862727], [2460568.580998121, 2460568.581109969], [2460568.581221817, 2460568.5818929058], [2460568.582004754, 2460568.58222845], [2460568.582340298, 2460568.5824521463], [2460568.5869260705, 2460568.5871497667], [2460568.587261615, 2460568.587373463], [2460568.5877090073, 2460568.5881564], [2460568.588380096, 2460568.5887156404], [2460568.5891630324, 2460568.5892748805], [2460568.589722273, 2460568.589834121], [2460568.589945969, 2460568.5900578173], [2460568.5901696654, 2460568.590840754], [2460568.591623691, 2460568.591735539], [2460568.591847387, 2460568.5920710834], [2460568.5924066277, 2460568.592518476], [2460568.592630324, 2460568.592742172], [2460568.5929658683, 2460568.5931895645], [2460568.5933014126, 2460568.5934132608], [2460568.593525109, 2460568.5939725013], [2460568.5943080457, 2460568.594531742], [2460568.59520283, 2460568.5953146783], [2460568.5954265264, 2460568.5955383745], [2460568.599117514, 2460568.599676755], [2460568.599788603, 2460568.6005715393], [2460568.6006833874, 2460568.6009070836], [2460568.601354476, 2460568.601466324], [2460568.602137413, 2460568.604150679], [2460568.604374375, 2460568.6044862233], [2460568.604933616, 2460568.605045464], [2460568.6057165526, 2460568.6058284007], [2460568.605940249, 2460568.6062757927], [2460568.606499489, 2460568.6070587295], [2460568.6072824257, 2460568.607394274], [2460568.608624603, 2460568.6087364512], [2460568.6088482994, 2460568.6089601475], [2460568.6091838437, 2460568.610302325], [2460568.610414173, 2460568.610526021], [2460568.610637869, 2460568.6109734136], [2460568.6110852617, 2460568.61119711], [2460568.6116445023, 2460568.6117563504], [2460568.6125392867, 2460568.612651135], [2460568.6141051603, 2460568.6143288566], [2460568.618131692, 2460568.61824354], [2460568.6183553883, 2460568.6188027808], [2460568.6196975657, 2460568.619921262], [2460568.620144958, 2460568.6207041987], [2460568.623164857, 2460568.623500401], [2460568.6268558446, 2460568.627079541], [2460568.627303237, 2460568.6275269333], [2460568.627974326, 2460568.628198022], [2460568.6289809584, 2460568.6292046546], [2460568.6311060726, 2460568.6312179207], [2460568.6354681486, 2460568.6355799967], [2460568.6361392373, 2460568.6362510854], [2460568.6427382757, 2460568.642850124], [2460568.64486339, 2460568.6451989342], [2460568.647435896, 2460568.647547744], [2460568.663206479, 2460568.663318327], [2460568.666897467, 2460568.667009315], [2460568.6770756445, 2460568.6772993407], [2460568.6780822775, 2460568.6783059738], [2460568.6794244545, 2460568.6796481507], [2460568.6802073913, 2460568.6803192394], [2460568.6823325055, 2460568.6824443536]] freq_flags: [[49911499.0234375, 50033569.3359375], [52719116.2109375, 52841186.5234375], [58700561.5234375, 58822631.8359375], [62362670.8984375, 62728881.8359375], [66146850.5859375, 66268920.8984375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 113021850.5859375], [113265991.2109375, 113876342.7734375], [114120483.3984375, 114608764.6484375], [114974975.5859375, 115585327.1484375], [115707397.4609375, 118148803.7109375], [118392944.3359375, 119003295.8984375], [119369506.8359375, 119857788.0859375], [120223999.0234375, 120590209.9609375], [123031616.2109375, 123275756.8359375], [123886108.3984375, 124130249.0234375], [124618530.2734375, 125473022.4609375], [126937866.2109375, 127182006.8359375], [127426147.4609375, 128036499.0234375], [129989624.0234375, 130111694.3359375], [135482788.0859375, 138412475.5859375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142807006.8359375], [142929077.1484375, 146347045.8984375], [146591186.5234375, 148544311.5234375], [148666381.8359375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [151840209.9609375, 151962280.2734375], [152694702.1484375, 153060913.0859375], [153549194.3359375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [157577514.6484375, 157699584.9609375], [158187866.2109375, 158432006.8359375], [159164428.7109375, 159286499.0234375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [183456420.8984375, 183578491.2109375], [184555053.7109375, 184677124.0234375], [186386108.3984375, 186630249.0234375], [187362670.8984375, 187728881.8359375], [188095092.7734375, 198226928.7109375], [198348999.0234375, 198837280.2734375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [200790405.2734375, 200912475.5859375], [201156616.2109375, 202499389.6484375], [203231811.5234375, 203353881.8359375], [204452514.6484375, 204574584.9609375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [205551147.4609375, 205673217.7734375], [206893920.8984375, 207015991.2109375], [207138061.5234375, 207260131.8359375], [207992553.7109375, 209335327.1484375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [213485717.7734375, 213607788.0859375], [215194702.1484375, 215316772.4609375], [216659545.8984375, 216781616.2109375], [219833374.0234375, 219955444.3359375], [220687866.2109375, 220809936.5234375], [220932006.8359375, 221054077.1484375], [221176147.4609375, 221298217.7734375], [223007202.1484375, 223495483.3984375], [226669311.5234375, 226791381.8359375], [227401733.3984375, 227523803.7109375], [227767944.3359375, 227890014.6484375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231430053.7109375]] ex_ants: [[4, Jnn], [8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [50, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jnn], [68, Jee], [68, Jnn], [69, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jee], [82, Jnn], [83, Jee], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [99, Jee], [100, Jee], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [119, Jee], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [123, Jnn], [127, Jee], [127, Jnn], [130, Jee], [130, Jnn], [131, Jee], [134, Jee], [135, Jnn], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [143, Jnn], [144, Jnn], [145, Jnn], [146, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [166, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jnn], [193, Jee], [194, Jee], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [209, Jee], [209, Jnn], [212, Jnn], [213, Jee], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [226, Jnn], [231, Jee], [231, Jnn], [232, Jee], [233, Jnn], [235, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [250, Jnn], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [295, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 47.37 minutes.