Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1944 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460572/zen.2460572.25240.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1944 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460572/zen.2460572.25240.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
26.344% of waterfall flagged to start. 27.426% of waterfall flagged after flagging z > 5.0 outliers.
27.778% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 6 channels. Flagging 8 channels previously flagged 25.00% or more. Flagging 80 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 29.831% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1944 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460572/zen.2460572.25240.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460572/2460572_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460572.252624195, 2460572.252736043], [2460572.253630828, 2460572.253742676], [2460572.2566507272, 2460572.2567625754], [2460572.259670626, 2460572.259782474], [2460572.2655985756, 2460572.2657104237], [2460572.2736516395, 2460572.2737634876], [2460572.273987184, 2460572.274099032], [2460572.288191893, 2460572.2885274375], [2460572.2886392856, 2460572.28897483], [2460572.2926658173, 2460572.2927776654], [2460572.2930013617, 2460572.29311321], [2460572.3060875903, 2460572.3064231346], [2460572.306646831, 2460572.306758679], [2460572.3094430333, 2460572.3095548814], [2460572.3136932617, 2460572.314028806], [2460572.315259135, 2460572.315482831], [2460572.315594679, 2460572.3158183754], [2460572.3160420717, 2460572.316265768], [2460572.3170487047, 2460572.317160553], [2460572.3178316415, 2460572.318167186], [2460572.3187264265, 2460572.319061971], [2460572.32085154, 2460572.3210752364], [2460572.3218581732, 2460572.3220818695], [2460572.3223055657, 2460572.322417414], [2460572.32264111, 2460572.322752958], [2460572.3228648063, 2460572.3230885025], [2460572.3240951356, 2460572.3242069837], [2460572.3247662243, 2460572.3248780724], [2460572.325437313, 2460572.325549161], [2460572.325996553, 2460572.3262202493], [2460572.3264439455, 2460572.3265557936], [2460572.327897971, 2460572.3281216673], [2460572.329799389, 2460572.330023085], [2460572.3301349333, 2460572.3304704777], [2460572.3310297183, 2460572.3314771103], [2460572.334273313, 2460572.3343851613], [2460572.3365102755, 2460572.3367339717], [2460572.337293212, 2460572.337516908], [2460572.3377406043, 2460572.3378524524], [2460572.3381879968, 2460572.338299845], [2460572.3387472373, 2460572.3389709336], [2460572.3400894147, 2460572.340201263], [2460572.3407605034, 2460572.341096048], [2460572.342326377, 2460572.342438225], [2460572.342773769, 2460572.342885617], [2460572.343556706, 2460572.343668554], [2460572.344451491, 2460572.344675187], [2460572.3448988833, 2460572.3450107314], [2460572.3470239975, 2460572.3472476937], [2460572.347695086, 2460572.3479187824], [2460572.351721618, 2460572.351833466], [2460572.352840099, 2460572.352951947], [2460572.3532874915, 2460572.3533993396], [2460572.354294124, 2460572.354405972], [2460572.3556363015, 2460572.3557481496], [2460572.35630739, 2460572.3564192383], [2460572.357314023, 2460572.3574258713], [2460572.3576495675, 2460572.3577614157], [2460572.357985112, 2460572.358208808], [2460572.3601102256, 2460572.3602220737], [2460572.362570884, 2460572.3626827323], [2460572.363241973, 2460572.363353821], [2460572.3664855678, 2460572.366709264], [2460572.370847644, 2460572.370959492], [2460572.3724135174, 2460572.3726372137], [2460572.3735319986, 2460572.3736438467], [2460572.376328201, 2460572.3767755935], [2460572.378229619, 2460572.3784533152], [2460572.3786770115, 2460572.3787888596], [2460572.3799073407, 2460572.380019189], [2460572.380242885, 2460572.381025822], [2460572.38113767, 2460572.381249518], [2460572.3816969106, 2460572.381920607], [2460572.3831509356, 2460572.3832627838], [2460572.383374632, 2460572.38348648], [2460572.383598328, 2460572.3840457206], [2460572.3841575687, 2460572.384269417], [2460572.384493113, 2460572.3851642017], [2460572.38527605, 2460572.3859471385], [2460572.386170835, 2460572.386282683], [2460572.387736708, 2460572.387848556], [2460572.392658025, 2460572.392769873], [2460572.3932172656, 2460572.3934409614], [2460572.3990333667, 2460572.399257063], [2460572.399480759, 2460572.3998163035], [2460572.4018295696, 2460572.402053266], [2460572.4026125064, 2460572.4027243545], [2460572.4028362026, 2460572.4029480508], [2460572.4037309876, 2460572.403954684], [2460572.407421975, 2460572.407645671], [2460572.415922431, 2460572.416034279], [2460572.4193897224, 2460572.4196134186], [2460572.43135747, 2460572.431581166], [2460572.4465688122, 2460572.4470162047], [2460572.4500361034, 2460572.4502597996], [2460572.450483496, 2460572.450595344], [2460572.4509308883, 2460572.4511545845], [2460572.453615243, 2460572.453727091], [2460572.454621876, 2460572.4548455724], [2460572.4645763575, 2460572.4648000537], [2460572.4654711424, 2460572.4656948387], [2460572.4668133194, 2460572.4670370156], [2460572.4671488637, 2460572.467260712], [2460572.4678199524, 2460572.4679318005], [2460572.471399092, 2460572.4716227883], [2460572.482919447, 2460572.4830312952], [2460572.4838142316, 2460572.484037928], [2460572.4863867383, 2460572.4866104345], [2460572.4964530678, 2460572.496564916], [2460572.500815144, 2460572.50103884], [2460572.505065372, 2460572.5051772203], [2460572.51110517, 2460572.5113288662], [2460572.513677676, 2460572.5137895243], [2460572.521507044, 2460572.521618892], [2460572.524974335, 2460572.525086183], [2460572.526092816, 2460572.5262046643], [2460572.5263165124, 2460572.5265402086], [2460572.529448259, 2460572.5295601073], [2460572.5314615252, 2460572.5315733734], [2460572.5341458796, 2460572.5342577277], [2460572.5350406645, 2460572.5351525126], [2460572.542534488, 2460572.542870032], [2460572.5556207164, 2460572.5558444127], [2460572.5591998557, 2460572.559423552], [2460572.568147704, 2460572.5687069446], [2460572.569937274, 2460572.570049122], [2460572.5704965144, 2460572.5707202107], [2460572.5717268437, 2460572.571838692], [2460572.57195054, 2460572.572062388], [2460572.572957173, 2460572.573180869], [2460572.5737401093, 2460572.5746348943], [2460572.5748585905, 2460572.575305983], [2460572.5759770717, 2460572.576424464], [2460572.5777666415, 2460572.5779903377], [2460572.578214034, 2460572.57843773], [2460572.5786614264, 2460572.5787732746], [2460572.5792206666, 2460572.579444363], [2460572.5803391477, 2460572.580562844], [2460572.5810102364, 2460572.5811220845], [2460572.58257611, 2460572.5830235025], [2460572.583470895, 2460572.583582743], [2460572.58436568, 2460572.584477528], [2460572.5847012238, 2460572.584813072], [2460572.586826338, 2460572.586938186], [2460572.588615908, 2460572.588727756], [2460572.588839604, 2460572.588951452], [2460572.5892869965, 2460572.5893988446], [2460572.589958085, 2460572.5900699333], [2460572.5918595027, 2460572.592195047], [2460572.592306895, 2460572.5924187433], [2460572.594208313, 2460572.595214946], [2460572.597451908, 2460572.5976756043], [2460572.603715402, 2460572.6041627945], [2460572.604498339, 2460572.604722035], [2460572.6069589974, 2460572.6070708456], [2460572.613110643, 2460572.613334339], [2460572.6144528203, 2460572.6145646684], [2460572.6165779345, 2460572.6166897826], [2460572.6168016307, 2460572.617025327], [2460572.618703048, 2460572.6188148963], [2460572.6199333775, 2460572.620268922], [2460572.623400669, 2460572.6236243653], [2460572.624742846, 2460572.6249665422], [2460572.626756112, 2460572.6270916564], [2460572.6280982895, 2460572.628433834], [2460572.6315655806, 2460572.631789277], [2460572.631901125, 2460572.632012973], [2460572.6322366693, 2460572.6325722137], [2460572.634026239, 2460572.6341380873], [2460572.6344736316, 2460572.634921024], [2460572.635256568, 2460572.635368416], [2460572.636375049, 2460572.6367105935], [2460572.637046138, 2460572.637157986], [2460572.637269834, 2460572.637381682], [2460572.6374935303, 2460572.6376053784], [2460572.638164619, 2460572.6385001633], [2460572.6386120114, 2460572.6388357077], [2460572.638947556, 2460572.639059404], [2460572.639171252, 2460572.6392831], [2460572.6396186445, 2460572.6397304926], [2460572.6398423407, 2460572.639954189], [2460572.640177885, 2460572.640289733], [2460572.6405134294, 2460572.641408214], [2460572.641520062, 2460572.64163191], [2460572.641743758, 2460572.6420793026], [2460572.6421911507, 2460572.642302999], [2460572.642414847, 2460572.642638543], [2460572.6427503913, 2460572.6429740875], [2460572.6430859356, 2460572.6431977837], [2460572.643309632, 2460572.64342148], [2460572.643533328, 2460572.6439807205], [2460572.6440925687, 2460572.644204417], [2460572.644428113, 2460572.644539961], [2460572.6446518092, 2460572.6449873536], [2460572.6450992017, 2460572.64521105], [2460572.645434746, 2460572.6456584423], [2460572.6457702904, 2460572.6458821385], [2460572.6459939866, 2460572.646441379], [2460572.6465532267, 2460572.6472243154], [2460572.6473361636, 2460572.64755986], [2460572.647671708, 2460572.647895404], [2460572.6480072523, 2460572.6482309485], [2460572.6483427966, 2460572.648902037], [2460572.6490138853, 2460572.6493494296], [2460572.6494612778, 2460572.6503560627], [2460572.650467911, 2460572.6510271514], [2460572.6511389995, 2460572.6512508476], [2460572.6513626957, 2460572.651474544], [2460572.651586392, 2460572.6523693283], [2460572.6524811764, 2460572.652928569], [2460572.653152265, 2460572.6534878095], [2460572.6535996576, 2460572.6544944425], [2460572.6546062906, 2460572.6552773793], [2460572.6553892274, 2460572.6556129237], [2460572.655724772, 2460572.655948468], [2460572.6561721643, 2460572.656955101], [2460572.657066949, 2460572.6571787973], [2460572.6574024935, 2460572.6578498855], [2460572.6580735818, 2460572.658409126], [2460572.6588565186, 2460572.6589683667], [2460572.659080215, 2460572.659303911], [2460572.6596394554, 2460572.6597513035], [2460572.660198696, 2460572.660422392], [2460572.6606460884, 2460572.661429025], [2460572.661988266, 2460572.662100114], [2460572.6625475064, 2460572.663330443], [2460572.6638896833, 2460572.6641133795], [2460572.664448924, 2460572.6650081645], [2460572.665455557, 2460572.6657911013], [2460572.666350342, 2460572.66646219], [2460572.667468823, 2460572.6676925193], [2460572.6678043674, 2460572.6681399117], [2460572.67060057, 2460572.670712418], [2460572.6710479623, 2460572.671830899], [2460572.6730612284, 2460572.673620469], [2460572.673732317, 2460572.6739560133], [2460572.67529819, 2460572.6755218864], [2460572.675969279, 2460572.6765285195], [2460572.6767522157, 2460572.676975912], [2460572.67887733, 2460572.678989178], [2460572.679772115, 2460572.679883963], [2460572.682344621, 2460572.682456469], [2460572.6829038616, 2460572.6830157097], [2460572.6848052796, 2460572.6849171277], [2460572.6854763683, 2460572.6857000645]] freq_flags: [[47958374.0234375, 48202514.6484375], [49911499.0234375, 50033569.3359375], [54061889.6484375, 54916381.8359375], [62362670.8984375, 62850952.1484375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113632202.1484375, 113754272.4609375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124618530.2734375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137069702.1484375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[4, Jnn], [8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jee], [29, Jnn], [30, Jee], [30, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [50, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [79, Jee], [79, Jnn], [81, Jee], [81, Jnn], [82, Jnn], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [95, Jee], [95, Jnn], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [113, Jee], [113, Jnn], [116, Jnn], [117, Jee], [117, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [125, Jnn], [130, Jee], [130, Jnn], [132, Jee], [134, Jee], [136, Jee], [136, Jnn], [140, Jee], [140, Jnn], [141, Jee], [141, Jnn], [142, Jee], [142, Jnn], [145, Jee], [145, Jnn], [146, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [166, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [193, Jee], [194, Jee], [196, Jee], [196, Jnn], [197, Jee], [197, Jnn], [198, Jee], [198, Jnn], [199, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [215, Jnn], [216, Jee], [218, Jee], [218, Jnn], [220, Jee], [220, Jnn], [221, Jee], [221, Jnn], [222, Jee], [222, Jnn], [227, Jee], [231, Jee], [231, Jnn], [232, Jee], [232, Jnn], [233, Jee], [233, Jnn], [234, Jee], [234, Jnn], [235, Jee], [235, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [246, Jnn], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 42.88 minutes.