Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1944 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460574/zen.2460574.25250.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1944 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460574/zen.2460574.25250.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
22.773% of waterfall flagged to start. 29.005% of waterfall flagged after flagging z > 5.0 outliers.
29.228% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice
Mean of empty slice
Flagging an additional 0 integrations and 8 channels. Flagging 5 channels previously flagged 25.00% or more. Flagging 10 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 29.967% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1944 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460574/zen.2460574.25250.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460574/2460574_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460574.253063653, 2460574.2532873494], [2460574.2541821343, 2460574.2546295268], [2460574.255971704, 2460574.2561954004], [2460574.2564190966, 2460574.256642793], [2460574.257649426, 2460574.25798497], [2460574.2595508434, 2460574.2597745396], [2460574.2638010713, 2460574.2640247676], [2460574.265590641, 2460574.2658143374], [2460574.2678276035, 2460574.2680512997], [2460574.268163148, 2460574.268274996], [2460574.273420009, 2460574.273643705], [2460574.274426642, 2460574.274650338], [2460574.274762186, 2460574.27509773], [2460574.2756569707, 2460574.275768819], [2460574.276104363, 2460574.2762162113], [2460574.2772228443, 2460574.2773346924], [2460574.277893933, 2460574.2781176292], [2460574.278788718, 2460574.279012414], [2460574.2792361104, 2460574.2794598066], [2460574.279683503, 2460574.279907199], [2460574.280019047, 2460574.2801308953], [2460574.2806901354, 2460574.2809138317], [2460574.2814730722, 2460574.2815849204], [2460574.283038946, 2460574.283262642], [2460574.283933731, 2460574.284157427], [2460574.2843811233, 2460574.2846048195], [2460574.285275908, 2460574.2854996044], [2460574.285946997, 2460574.286282541], [2460574.2922104904, 2460574.292546035], [2460574.2942237565, 2460574.2944474528], [2460574.294671149, 2460574.294894845], [2460574.29578963, 2460574.2960133264], [2460574.296572567, 2460574.296684415], [2460574.2970199594, 2460574.2971318075], [2460574.297802896, 2460574.298026592], [2460574.3011583393, 2460574.3013820355], [2460574.301829428, 2460574.302053124], [2460574.3056322634, 2460574.3058559597], [2460574.307198137, 2460574.3074218333], [2460574.3097706432, 2460574.3099943395], [2460574.3110009725, 2460574.3112246688], [2460574.3130142386, 2460574.313237935], [2460574.313349783, 2460574.313461631], [2460574.3145801118, 2460574.314803808], [2460574.3171526184, 2460574.317488163], [2460574.317600011, 2460574.317711859], [2460574.3182710996, 2460574.3183829477], [2460574.319501429, 2460574.319613277], [2460574.320843606, 2460574.321067302], [2460574.32117915, 2460574.3214028464], [2460574.3255412267, 2460574.3257649224], [2460574.328449277, 2460574.3286729734], [2460574.3295677584, 2460574.3296796065], [2460574.3297914546, 2460574.3299033027], [2460574.3322521127, 2460574.332363961], [2460574.332475809, 2460574.332587657], [2460574.33359429, 2460574.3338179863], [2460574.336502341, 2460574.3367260373], [2460574.3373971255, 2460574.337620822], [2460574.338739303, 2460574.338962999], [2460574.339857784, 2460574.340528873], [2460574.3409762653, 2460574.341647354], [2460574.3426539865, 2460574.3427658346], [2460574.345226493, 2460574.3453383413], [2460574.346121278, 2460574.3462331262], [2460574.3474634555, 2460574.3475753036], [2460574.3488056324, 2460574.349253025], [2460574.351266291, 2460574.351489987], [2460574.3517136835, 2460574.3518255316], [2460574.3519373797, 2460574.352049228], [2460574.352161076, 2460574.3526084684], [2460574.3541743415, 2460574.354398038], [2460574.3549572784, 2460574.3550691265], [2460574.3552928227, 2460574.355516519], [2460574.3562994557, 2460574.356411304], [2460574.356523152, 2460574.356635], [2460574.357306089, 2460574.357529785], [2460574.364688064, 2460574.36491176], [2460574.3658065447, 2460574.366142089], [2460574.3667013296, 2460574.366925026], [2460574.3717344943, 2460574.3719581906], [2460574.3781098365, 2460574.3782216846], [2460574.380346799, 2460574.380570495], [2460574.3811297356, 2460574.381353432], [2460574.381577128, 2460574.3818008243], [2460574.38381409, 2460574.383925938], [2460574.3844851786, 2460574.3845970267], [2460574.3872813815, 2460574.3873932296], [2460574.3886235585, 2460574.3887354066], [2460574.3895183434, 2460574.3897420396], [2460574.394215964, 2460574.39443966], [2460574.395558141, 2460574.3957818374], [2460574.3986898884, 2460574.3989135846], [2460574.4010386984, 2460574.4012623946], [2460574.406742952, 2460574.4068548], [2460574.4144604714, 2460574.4145723195], [2460574.4153552563, 2460574.4154671044], [2460574.417368522, 2460574.41748037], [2460574.4179277625, 2460574.4181514587], [2460574.4197173323, 2460574.4198291805], [2460574.4230727754, 2460574.4231846235], [2460574.4268756113, 2460574.427099307], [2460574.428217788, 2460574.4284414845], [2460574.4305665987, 2460574.430790295], [2460574.434369434, 2460574.4344812823], [2460574.4391789027, 2460574.439402599], [2460574.4473438147, 2460574.447455663], [2460574.450811106, 2460574.451034802], [2460574.45293622, 2460574.453159916], [2460574.456403511, 2460574.4566272073], [2460574.460094499, 2460574.460318195], [2460574.463338094, 2460574.463449942], [2460574.464680271, 2460574.4649039675], [2460574.4659106005, 2460574.4660224486], [2460574.4734044233, 2460574.4736281196], [2460574.474075512, 2460574.4742992083], [2460574.4745229045, 2460574.4747466007], [2460574.4765361706, 2460574.476759867], [2460574.476871715, 2460574.4774309555], [2460574.479332373, 2460574.479444221], [2460574.4800034617, 2460574.480227158], [2460574.4825759684, 2460574.4826878165], [2460574.483023361, 2460574.483247057], [2460574.487497285, 2460574.487609133], [2460574.48839207, 2460574.488615766], [2460574.4892868544, 2460574.4895105506], [2460574.4904053356, 2460574.490629032], [2460574.4930896903, 2460574.4932015385], [2460574.493537083, 2460574.493760779], [2460574.4940963234, 2460574.4944318677], [2460574.4965569815, 2460574.4966688296], [2460574.497899159, 2460574.498011007], [2460574.500247969, 2460574.500471665], [2460574.501590146, 2460574.5018138424], [2460574.5020375387, 2460574.502484931], [2460574.50315602, 2460574.503379716], [2460574.5038271085, 2460574.504050805], [2460574.5091958176, 2460574.509419514], [2460574.5098669063, 2460574.5100906026], [2460574.512998653, 2460574.5132223493], [2460574.513893438, 2460574.5141171343], [2460574.514788223, 2460574.515011919], [2460574.516577793, 2460574.5170251853], [2460574.518143666, 2460574.518367362], [2460574.519262147, 2460574.5194858434], [2460574.5198213877, 2460574.520045084], [2460574.521275413, 2460574.5214991095], [2460574.5216109576, 2460574.521946502], [2460574.522170198, 2460574.5225057425], [2460574.5239597675, 2460574.524183464], [2460574.5256374893, 2460574.5258611855], [2460574.52619673, 2460574.526420426], [2460574.527315211, 2460574.5275389072], [2460574.5277626035, 2460574.528209996], [2460574.5293284766, 2460574.529775869], [2460574.5308943503, 2460574.5311180465], [2460574.533914249, 2460574.534137945], [2460574.5342497933, 2460574.5346971857], [2460574.5382763254, 2460574.5385000217], [2460574.538947414, 2460574.5393948066], [2460574.5418554647, 2460574.5425265534], [2460574.542973946, 2460574.543197642], [2460574.5490137436, 2460574.54923744], [2460574.5514744017, 2460574.551698098], [2460574.552816579, 2460574.5530402754], [2460574.5542706046, 2460574.5543824527], [2460574.5552772377, 2460574.555500934], [2460574.5562838707, 2460574.5565075665], [2460574.557066807, 2460574.5572905033], [2460574.558185288, 2460574.5584089844], [2460574.558744529, 2460574.558856377], [2460574.560869643, 2460574.561093339], [2460574.5628829086, 2460574.563106605], [2460574.563442149, 2460574.5637776935], [2460574.56400139, 2460574.564225086], [2460574.5645606304, 2460574.5647843266], [2460574.5655672634, 2460574.5657909596], [2460574.5666857446, 2460574.566909441], [2460574.5673568333, 2460574.568475314], [2460574.5692582508, 2460574.569481947], [2460574.5707122763, 2460574.5709359725], [2460574.5752980486, 2460574.575521745], [2460574.577646859, 2460574.577870555], [2460574.5780942515, 2460574.5783179477], [2460574.5812259982, 2460574.5813378463], [2460574.5814496945, 2460574.5816733907], [2460574.5848051375, 2460574.5850288337], [2460574.589167214, 2460574.58939091], [2460574.5912923277, 2460574.591404176], [2460574.592634505, 2460574.5928582014], [2460574.5950951637, 2460574.595207012], [2460574.596661037, 2460574.596884733], [2460574.598003214, 2460574.5982269105], [2460574.5984506067, 2460574.598674303], [2460574.604937797, 2460574.605161493], [2460574.606951063, 2460574.607174759], [2460574.6099709617, 2460574.61008281], [2460574.611201291, 2460574.611424987], [2460574.611984228, 2460574.612319772], [2460574.613550101, 2460574.613773797], [2460574.6143330378, 2460574.614556734], [2460574.6172410888, 2460574.617464785], [2460574.62070838, 2460574.620932076], [2460574.6220505573, 2460574.6222742535], [2460574.624287519, 2460574.6243993673], [2460574.6246230635, 2460574.6248467597], [2460574.6254060003, 2460574.6258533928], [2460574.626188937, 2460574.6264126333], [2460574.6275311145, 2460574.6277548107], [2460574.62898514, 2460574.6293206844], [2460574.6299917726, 2460574.6301036207], [2460574.631445798, 2460574.631557646], [2460574.6336827604, 2460574.6340183048], [2460574.6353604817, 2460574.635584178], [2460574.6360315704, 2460574.6362552666], [2460574.6380448365, 2460574.6382685327], [2460574.640281799, 2460574.640617343], [2460574.640841039, 2460574.641064735], [2460574.646992685, 2460574.647216381], [2460574.6474400773, 2460574.6476637735], [2460574.651019217, 2460574.651242913], [2460574.653479875, 2460574.6537035713], [2460574.654486508, 2460574.6547102043], [2460574.6569471667, 2460574.657059015], [2460574.6581774955, 2460574.658624888], [2460574.659519673, 2460574.659743369], [2460574.6601907616, 2460574.6608618503], [2460574.6610855465, 2460574.6613092427], [2460574.6636580527, 2460574.664105445], [2460574.665112078, 2460574.6654476225], [2460574.665783167, 2460574.666006863], [2460574.6664542556, 2460574.666901648], [2460574.6675727367, 2460574.667796433], [2460574.6682438254, 2460574.6684675217], [2460574.668691218, 2460574.668914914], [2460574.6715992684, 2460574.6718229647], [2460574.672270357, 2460574.6724940534], [2460574.6812182055, 2460574.6814419017], [2460574.6864750665, 2460574.6872580033]] freq_flags: [[49911499.0234375, 50033569.3359375], [54183959.9609375, 54306030.2734375], [54428100.5859375, 54916381.8359375], [62240600.5859375, 63583374.0234375], [66024780.2734375, 67367553.7109375], [69686889.6484375, 69808959.9609375], [69931030.2734375, 70175170.8984375], [70419311.5234375, 70541381.8359375], [74325561.5234375, 74447631.8359375], [77743530.2734375, 78475952.1484375], [87265014.6484375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [124740600.5859375, 125350952.1484375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137069702.1484375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149887084.9609375, 150009155.2734375], [153793334.9609375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191268920.8984375], [191390991.2109375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [15, Jnn], [16, Jee], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [45, Jnn], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [50, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [65, Jnn], [69, Jee], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [82, Jnn], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [99, Jee], [99, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [116, Jee], [116, Jnn], [117, Jee], [117, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [123, Jnn], [126, Jee], [127, Jee], [130, Jee], [130, Jnn], [131, Jee], [134, Jee], [136, Jee], [136, Jnn], [142, Jnn], [144, Jee], [144, Jnn], [145, Jee], [145, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [173, Jee], [173, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [190, Jee], [190, Jnn], [191, Jee], [191, Jnn], [192, Jee], [192, Jnn], [193, Jee], [193, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jee], [201, Jnn], [202, Jee], [202, Jnn], [206, Jee], [207, Jee], [207, Jnn], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [216, Jee], [218, Jee], [218, Jnn], [220, Jee], [220, Jnn], [221, Jee], [221, Jnn], [222, Jee], [222, Jnn], [223, Jee], [223, Jnn], [224, Jee], [224, Jnn], [225, Jee], [225, Jnn], [226, Jee], [226, Jnn], [227, Jee], [231, Jee], [231, Jnn], [232, Jee], [233, Jee], [233, Jnn], [234, Jee], [234, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [250, Jnn], [251, Jee], [253, Jee], [253, Jnn], [255, Jee], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [268, Jnn], [269, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [282, Jee], [282, Jnn], [283, Jee], [283, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 51.94 minutes.