Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1941 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460579/zen.2460579.25247.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1941 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460579/zen.2460579.25247.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
22.331% of waterfall flagged to start. 25.982% of waterfall flagged after flagging z > 5.0 outliers.
26.150% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 18 channels. Flagging 9 channels previously flagged 25.00% or more. Flagging 25 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 27.840% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1941 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460579/zen.2460579.25247.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460579/2460579_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460579.256384528, 2460579.256720072], [2460579.2588451863, 2460579.2589570344], [2460579.259628123, 2460579.2597399713], [2460579.2605229076, 2460579.2614176925], [2460579.261976933, 2460579.262088781], [2460579.2622006293, 2460579.2624243256], [2460579.2633191105, 2460579.2634309586], [2460579.2644375917, 2460579.264661288], [2460579.2675693384, 2460579.2676811866], [2460579.270924782, 2460579.271260326], [2460579.2718195664, 2460579.2719314145], [2460579.272378807, 2460579.272602503], [2460579.273497288, 2460579.2739446806], [2460579.2747276174, 2460579.2748394655], [2460579.275286858, 2460579.276069795], [2460579.2773001236, 2460579.2774119717], [2460579.278754149, 2460579.2789778453], [2460579.279537086, 2460579.2798726303], [2460579.2803200227, 2460579.2808792633], [2460579.2819977445, 2460579.283116225], [2460579.2843465544, 2460579.2851294912], [2460579.28814939, 2460579.288373086], [2460579.2908337447, 2460579.290945593], [2460579.2941891877, 2460579.294524732], [2460579.297320935, 2460579.297432783], [2460579.3029133403, 2460579.3031370365], [2460579.307834657, 2460579.308058353], [2460579.3083938975, 2460579.3085057456], [2460579.3104071636, 2460579.3105190117], [2460579.3137626066, 2460579.3138744547], [2460579.3145455434, 2460579.314992936], [2460579.316558809, 2460579.3167825053], [2460579.3172298977, 2460579.317453594], [2460579.31767729, 2460579.3179009864], [2460579.320361645, 2460579.320585341], [2460579.3230459993, 2460579.3232696955], [2460579.3261777465, 2460579.3264014428], [2460579.326513291, 2460579.326625139], [2460579.326848835, 2460579.3269606833], [2460579.3270725315, 2460579.327408076], [2460579.334454506, 2460579.3346782024], [2460579.3359085317, 2460579.33602038], [2460579.337362557, 2460579.3375862534], [2460579.3399350634, 2460579.3400469115], [2460579.340494304, 2460579.340718], [2460579.341389089, 2460579.3417246332], [2460579.3427312663, 2460579.3429549625], [2460579.3465341018, 2460579.346757798], [2460579.3483236716, 2460579.348547368], [2460579.351231722, 2460579.3514554184], [2460579.3631994696, 2460579.3633113177], [2460579.364429799, 2460579.364653495], [2460579.368008938, 2460579.3682326344], [2460579.368791875, 2460579.369015571], [2460579.3694629637, 2460579.3700222042], [2460579.3727065586, 2460579.372930255], [2460579.374943521, 2460579.375167217], [2460579.3765093945, 2460579.3767330907], [2460579.37852266, 2460579.3786345082], [2460579.379193749, 2460579.379417445], [2460579.380424078, 2460579.380535926], [2460579.386575724, 2460579.386687572], [2460579.3935103067, 2460579.393734003], [2460579.397313142, 2460579.3976486865], [2460579.4010041296, 2460579.4011159777], [2460579.403241092, 2460579.403464788], [2460579.4071557755, 2460579.4073794717], [2460579.4079387123, 2460579.4081624085], [2460579.412748181, 2460579.412971877], [2460579.4152088393, 2460579.4154325356], [2460579.418005042, 2460579.41811689], [2460579.425498865, 2460579.425610713], [2460579.4259462575, 2460579.4260581057], [2460579.429637245, 2460579.429749093], [2460579.4322097516, 2460579.432433448], [2460579.432768992, 2460579.4328808403], [2460579.4342230177, 2460579.434446714], [2460579.435117802, 2460579.4353414983], [2460579.4400391188, 2460579.440150967], [2460579.442387929, 2460579.4424997773], [2460579.443170866, 2460579.443394562], [2460579.445631524, 2460579.445743372], [2460579.457040031, 2460579.4574874234], [2460579.4575992716, 2460579.4577111197], [2460579.4586059046, 2460579.458829601], [2460579.461066563, 2460579.4612902594], [2460579.461737652, 2460579.461961348], [2460579.4624087405, 2460579.4626324363], [2460579.463303525, 2460579.463527221], [2460579.4638627656, 2460579.4639746137], [2460579.46598788, 2460579.466211576], [2460579.4664352722, 2460579.4666589685], [2460579.4691196266, 2460579.4692314747], [2460579.4711328926, 2460579.471356589], [2460579.473817247, 2460579.474040943], [2460579.474935728, 2460579.4750475762], [2460579.4760542093, 2460579.4762779055], [2460579.477508235, 2460579.477731931], [2460579.4782911716, 2460579.478514868], [2460579.478626716, 2460579.478738564], [2460579.4817584627, 2460579.482094007], [2460579.4856731463, 2460579.4858968426], [2460579.4895878304, 2460579.4899233747], [2460579.4905944634, 2460579.4907063115], [2460579.492607729, 2460579.4928314253], [2460579.4941736027, 2460579.494397299], [2460579.4947328432, 2460579.4948446914], [2460579.4960750206, 2460579.4961868688], [2460579.496969805, 2460579.497081653], [2460579.4971935013, 2460579.4973053494], [2460579.4995423118, 2460579.499766008], [2460579.500660793, 2460579.500772641], [2460579.503121451, 2460579.5033451472], [2460579.504239932, 2460579.5043517803], [2460579.5080427676, 2460579.508266464], [2460579.512181148, 2460579.512404844], [2460579.5132996286, 2460579.5134114767], [2460579.5140825654, 2460579.5143062617], [2460579.5150891985, 2460579.5153128947], [2460579.515424743, 2460579.515536591], [2460579.515648439, 2460579.5158721353], [2460579.5162076796, 2460579.5163195278], [2460579.516655072, 2460579.51676692], [2460579.5240370473, 2460579.5241488954], [2460579.5266095535, 2460579.5268332497], [2460579.527056946, 2460579.527280642], [2460579.5319782626, 2460579.532201959], [2460579.533432288, 2460579.5336559843], [2460579.5346626174, 2460579.5349981617], [2460579.5373469717, 2460579.537570668], [2460579.5382417566, 2460579.538689149], [2460579.539472086, 2460579.539583934], [2460579.5433867695, 2460579.5436104657], [2460579.5452881875, 2460579.5454000356], [2460579.5507687447, 2460579.550992441], [2460579.5531175546, 2460579.553341251], [2460579.553676795, 2460579.5537886433], [2460579.559716593, 2460579.5600521374], [2460579.5601639855, 2460579.5602758336], [2460579.56049953, 2460579.560835074], [2460579.5609469223, 2460579.5610587704], [2460579.5647497578, 2460579.565085302], [2460579.5695592263, 2460579.5696710744], [2460579.5711251, 2460579.571236948], [2460579.5745923915, 2460579.5748160877], [2460579.574927936, 2460579.5751516316], [2460579.5780596826, 2460579.578283379], [2460579.5829809993, 2460579.5832046955], [2460579.584770569, 2460579.5849942653], [2460579.589020797, 2460579.5892444933], [2460579.59002743, 2460579.590139278], [2460579.5912577594, 2460579.591705152], [2460579.5936065693, 2460579.5937184175], [2460579.595060595, 2460579.595172443], [2460579.596290924, 2460579.5964027722], [2460579.597297557, 2460579.597633101], [2460579.600429304, 2460579.600653], [2460579.6007648483, 2460579.6008766964], [2460579.6026662663, 2460579.6027781144], [2460579.6031136587, 2460579.603225507], [2460579.6041202913, 2460579.6042321394], [2460579.607475735, 2460579.607699431], [2460579.610831178, 2460579.611166722], [2460579.6142984694, 2460579.6144103175], [2460579.618101305, 2460579.6185486973], [2460579.620673811, 2460579.620785659], [2460579.6210093554, 2460579.6211212035], [2460579.629957204, 2460579.6301809005], [2460579.6314112293, 2460579.6315230774], [2460579.632306014, 2460579.6325297104], [2460579.633312647, 2460579.6335363435], [2460579.6346548246, 2460579.634878521], [2460579.63610885, 2460579.6363325464], [2460579.636891787, 2460579.6371154827], [2460579.6389050526, 2460579.639128749], [2460579.640470926, 2460579.6405827743], [2460579.642372344, 2460579.6424841923], [2460579.642819736, 2460579.6430434324], [2460579.643826369, 2460579.6439382173], [2460579.6458396353, 2460579.6460633315], [2460579.6469581164, 2460579.647293661], [2460579.6485239896, 2460579.648747686], [2460579.652550522, 2460579.652774218], [2460579.656241509, 2460579.6564652054], [2460579.6565770535, 2460579.6568007497], [2460579.6597088003, 2460579.6599324965], [2460579.662169459, 2460579.662393155], [2460579.6673144717, 2460579.667538168], [2460579.668768497, 2460579.6689921934], [2460579.6754793837, 2460579.67570308], [2460579.6767097125, 2460579.6768215606], [2460579.677157105, 2460579.677380801], [2460579.6787229786, 2460579.678946675], [2460579.6796177635, 2460579.6798414597], [2460579.680065156, 2460579.680288852], [2460579.6816310296, 2460579.6869997387]] freq_flags: [[46859741.2109375, 46981811.5234375], [49911499.0234375, 50033569.3359375], [62362670.8984375, 62728881.8359375], [66635131.8359375, 67123413.0859375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124740600.5859375, 125228881.8359375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137069702.1484375, 137313842.7734375], [137435913.0859375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153671264.6484375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [157577514.6484375, 157699584.9609375], [158187866.2109375, 158309936.5234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [192001342.7734375, 192123413.0859375], [192245483.3984375, 192489624.0234375], [192611694.3359375, 193344116.2109375], [193466186.5234375, 193588256.8359375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [45, Jnn], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jnn], [83, Jnn], [84, Jee], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [96, Jee], [97, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jee], [103, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [117, Jee], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [123, Jnn], [125, Jnn], [127, Jee], [130, Jee], [130, Jnn], [135, Jee], [135, Jnn], [136, Jee], [136, Jnn], [137, Jee], [137, Jnn], [142, Jnn], [144, Jee], [144, Jnn], [145, Jee], [150, Jee], [150, Jnn], [151, Jee], [151, Jnn], [152, Jee], [152, Jnn], [153, Jee], [153, Jnn], [154, Jee], [154, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [164, Jnn], [165, Jee], [165, Jnn], [167, Jee], [167, Jnn], [170, Jee], [171, Jee], [171, Jnn], [172, Jee], [172, Jnn], [174, Jee], [174, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jee], [188, Jnn], [189, Jee], [189, Jnn], [194, Jee], [194, Jnn], [197, Jnn], [199, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jee], [201, Jnn], [202, Jee], [202, Jnn], [204, Jee], [204, Jnn], [205, Jee], [205, Jnn], [206, Jee], [206, Jnn], [207, Jee], [207, Jnn], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [211, Jee], [211, Jnn], [212, Jee], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [216, Jee], [216, Jnn], [217, Jee], [217, Jnn], [218, Jee], [218, Jnn], [220, Jee], [220, Jnn], [221, Jee], [221, Jnn], [222, Jee], [222, Jnn], [223, Jee], [223, Jnn], [224, Jee], [224, Jnn], [225, Jee], [225, Jnn], [226, Jee], [226, Jnn], [227, Jee], [227, Jnn], [228, Jnn], [231, Jee], [231, Jnn], [232, Jee], [232, Jnn], [233, Jee], [233, Jnn], [234, Jee], [234, Jnn], [235, Jee], [235, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [244, Jee], [244, Jnn], [245, Jee], [245, Jnn], [246, Jee], [246, Jnn], [250, Jee], [250, Jnn], [251, Jee], [251, Jnn], [252, Jee], [252, Jnn], [253, Jee], [253, Jnn], [255, Jee], [255, Jnn], [256, Jee], [256, Jnn], [261, Jee], [261, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [267, Jee], [267, Jnn], [268, Jee], [268, Jnn], [269, Jee], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [282, Jee], [282, Jnn], [283, Jee], [283, Jnn], [285, Jee], [285, Jnn], [295, Jee], [295, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 339.69 minutes.