Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1943 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460581/zen.2460581.25257.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1943 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460581/zen.2460581.25257.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
29.252% of waterfall flagged to start. 30.961% of waterfall flagged after flagging z > 5.0 outliers.
31.459% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 6 channels. Flagging 7 channels previously flagged 25.00% or more. Flagging 249 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 36.532% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1943 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460581/zen.2460581.25257.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460581/2460581_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460581.2524624933, 2460581.2525743414], [2460581.2532454296, 2460581.253580974], [2460581.2569364174, 2460581.2570482655], [2460581.258725987, 2460581.259061531], [2460581.260739253, 2460581.2610747973], [2460581.2624169746, 2460581.262752519], [2460581.2657724177, 2460581.265884266], [2460581.26800938, 2460581.268121228], [2460581.2709174305, 2460581.2710292786], [2460581.2711411268, 2460581.271364823], [2460581.2718122154, 2460581.2719240636], [2460581.2725951523, 2460581.2728188485], [2460581.2770690764, 2460581.2771809245], [2460581.280871912, 2460581.281095608], [2460581.2813193044, 2460581.2814311525], [2460581.2815430006, 2460581.2816548487], [2460581.281878545, 2460581.281990393], [2460581.282102241, 2460581.2823259374], [2460581.2824377855, 2460581.288142039], [2460581.288253887, 2460581.2888131277], [2460581.289036824, 2460581.289931609], [2460581.290155305, 2460581.291161938], [2460581.2914974825, 2460581.291833027], [2460581.292392267, 2460581.292615963], [2460581.2927278113, 2460581.2928396594], [2460581.2950766217, 2460581.295300318], [2460581.296195103, 2460581.296418799], [2460581.2980965204, 2460581.2983202166], [2460581.302458597, 2460581.302682293], [2460581.3046955587, 2460581.304807407], [2460581.30581404, 2460581.306037736], [2460581.3061495842, 2460581.3065969767], [2460581.307827306, 2460581.307939154], [2460581.310176116, 2460581.3105116603], [2460581.311294597, 2460581.3115182933], [2460581.31230123, 2460581.3125249264], [2460581.313084167, 2460581.313196015], [2460581.3134197113, 2460581.3135315594], [2460581.313867104, 2460581.3145381925], [2460581.3150974326, 2460581.315321129], [2460581.3158803694, 2460581.3159922175], [2460581.3161040656, 2460581.3162159137], [2460581.316327762, 2460581.31643961], [2460581.316551458, 2460581.316663306], [2460581.3197950535, 2460581.320130598], [2460581.3204661417, 2460581.320689838], [2460581.3240452814, 2460581.3241571295], [2460581.325611155, 2460581.325723003], [2460581.327848117, 2460581.3282955093], [2460581.3284073574, 2460581.3285192056], [2460581.330085079, 2460581.3303087754], [2460581.3313154085, 2460581.3314272566], [2460581.331539104, 2460581.3316509523], [2460581.332210193, 2460581.3325457373], [2460581.3329931297, 2460581.333328674], [2460581.334335307, 2460581.3344471552], [2460581.336124877, 2460581.336236725], [2460581.337355206, 2460581.337467054], [2460581.3378025983, 2460581.3379144464], [2460581.3382499907, 2460581.338361839], [2460581.338585535, 2460581.3388092313], [2460581.339704016, 2460581.3399277125], [2460581.3420528267, 2460581.3426120672], [2460581.3461912065, 2460581.3463030546], [2460581.3464149027, 2460581.346750447], [2460581.3469741433, 2460581.3470859914], [2460581.34831632, 2460581.3484281683], [2460581.349099257, 2460581.3496584976], [2460581.3497703457, 2460581.349994042], [2460581.35010589, 2460581.350217738], [2460581.3504414344, 2460581.3505532825], [2460581.3506651307, 2460581.350776979], [2460581.351112523, 2460581.3516717637], [2460581.352007308, 2460581.3522310043], [2460581.3525665486, 2460581.352902093], [2460581.3532376373, 2460581.361626245], [2460581.3619617894, 2460581.3620736375], [2460581.3629684225, 2460581.3630802706], [2460581.3641987517, 2460581.364534296], [2460581.3664357136, 2460581.36665941], [2460581.3674423466, 2460581.3675541948], [2460581.368560828, 2460581.371245182], [2460581.3713570302, 2460581.3714688784], [2460581.3715807265, 2460581.3718044227], [2460581.371916271, 2460581.372139967], [2460581.3728110557, 2460581.372922904], [2460581.3731466, 2460581.3735939926], [2460581.374153233, 2460581.3743769294], [2460581.375048018, 2460581.375159866], [2460581.3754954105, 2460581.3756072586], [2460581.3769494356, 2460581.37728498], [2460581.378515309, 2460581.3786271573], [2460581.3787390054, 2460581.3789627017], [2460581.3843314108, 2460581.384555107], [2460581.388805335, 2460581.388917183], [2460581.3948451327, 2460581.394956981], [2460581.397082095, 2460581.3973057913], [2460581.400437538, 2460581.4006612343], [2460581.4027863485, 2460581.4028981966], [2460581.4051351584, 2460581.4052470066], [2460581.407483969, 2460581.407595817], [2460581.4098327793, 2460581.4099446274], [2460581.413859311, 2460581.413971159], [2460581.4184450833, 2460581.4186687795], [2460581.4203465013, 2460581.4204583494], [2460581.4290706534, 2460581.4291825015], [2460581.4300772864, 2460581.4303009827], [2460581.430524679, 2460581.430636527], [2460581.431531312, 2460581.431755008], [2460581.4334327294, 2460581.4336564257], [2460581.43399197, 2460581.434103818], [2460581.4346630587, 2460581.434774907], [2460581.4363407805, 2460581.4364526286], [2460581.4385777423, 2460581.4389132867], [2460581.441262097, 2460581.4414857933], [2460581.44226873, 2460581.4426042745], [2460581.4437227556, 2460581.4438346038], [2460581.447190047, 2460581.447301895], [2460581.4479729836, 2460581.44819668], [2460581.4495388567, 2460581.449650705], [2460581.458151161, 2460581.4582630093], [2460581.4583748574, 2460581.4584867056], [2460581.461506604, 2460581.4617303004], [2460581.4637435665, 2460581.4638554147], [2460581.4646383515, 2460581.4647501996], [2460581.464973896, 2460581.465085744], [2460581.4668753133, 2460581.4670990095], [2460581.468329339, 2460581.468553035], [2460581.469671516, 2460581.4697833643], [2460581.470342605, 2460581.470454453], [2460581.4731388073, 2460581.4733625036], [2460581.4761587065, 2460581.4763824027], [2460581.4838762255, 2460581.484099922], [2460581.4866724284, 2460581.4867842766], [2460581.489468631, 2460581.489580479], [2460581.497857239, 2460581.4980809353], [2460581.499758657, 2460581.4999823533], [2460581.500988986, 2460581.501100834], [2460581.5025548595, 2460581.503002252], [2460581.5033377963, 2460581.5034496444], [2460581.503897037, 2460581.504008885], [2460581.5055747586, 2460581.505798455], [2460581.5060221506, 2460581.506357695], [2460581.5080354167, 2460581.508147265], [2460581.508482809, 2460581.5085946573], [2460581.509489442, 2460581.5097131385], [2460581.5121737965, 2460581.5122856447], [2460581.5128448852, 2460581.5130685815], [2460581.5244770884, 2460581.5247007846], [2460581.527049595, 2460581.5273851394], [2460581.52850362, 2460581.5287273163], [2460581.5289510125, 2460581.529286557], [2460581.5298457975, 2460581.5299576456], [2460581.531187975, 2460581.531299823], [2460581.531523519, 2460581.5318590635], [2460581.53208276, 2460581.532306456], [2460581.533313089, 2460581.5335367853], [2460581.535550051, 2460581.535773747], [2460581.537563317, 2460581.537675165], [2460581.5389054944, 2460581.5392410387], [2460581.5423727855, 2460581.5425964817], [2460581.545280836, 2460581.545392684], [2460581.547070406, 2460581.547182254], [2460581.5485244314, 2460581.5487481277], [2460581.549083672, 2460581.549307368], [2460581.5510969376, 2460581.5512087857], [2460581.551320634, 2460581.551432482], [2460581.554340533, 2460581.554564229], [2460581.557584128, 2460581.557807824], [2460581.5589263053, 2460581.5590381534], [2460581.5620580525, 2460581.5627291407], [2460581.562952837, 2460581.563064685], [2460581.564854255, 2460581.565077951], [2460581.565860888, 2460581.566084584], [2460581.5663082805, 2460581.5665319767], [2460581.566755673, 2460581.566867521], [2460581.568209698, 2460581.568433394], [2460581.570111116, 2460581.5704466603], [2460581.5705585084, 2460581.5707822046], [2460581.571900686, 2460581.572124382], [2460581.5727954707, 2460581.573019167], [2460581.573242863, 2460581.5734665594], [2460581.573578407, 2460581.573690255], [2460581.575256129, 2460581.575591673], [2460581.5760390656, 2460581.576262762], [2460581.5767101543, 2460581.5768220024], [2460581.577381243, 2460581.577604939], [2460581.5790589643, 2460581.5791708124], [2460581.5793945086, 2460581.5795063567], [2460581.5800655973, 2460581.580736686], [2460581.5811840785, 2460581.5812959266], [2460581.5820788634, 2460581.5824144077], [2460581.5854343064, 2460581.5857698508], [2460581.586105395, 2460581.5863290913], [2460581.5864409395, 2460581.586888332], [2460581.58700018, 2460581.5872238763], [2460581.5884542055, 2460581.589684535], [2460581.5902437754, 2460581.590467471], [2460581.5908030155, 2460581.59113856], [2460581.591362256, 2460581.591474104], [2460581.5919214967, 2460581.592257041], [2460581.593151826, 2460581.593375522], [2460581.5937110665, 2460581.5938229146], [2460581.596507269, 2460581.597402054], [2460581.5980731426, 2460581.5981849907], [2460581.5988560794, 2460581.5990797756], [2460581.6000864087, 2460581.600198257], [2460581.600310105, 2460581.600533801], [2460581.604784029, 2460581.6051195734], [2460581.6052314215, 2460581.605678814], [2460581.606797295, 2460581.6069091433], [2460581.607132839, 2460581.607244687], [2460581.6073565353, 2460581.6074683834], [2460581.6078039277, 2460581.607915776], [2460581.608139472, 2460581.6083631683], [2460581.6093698014, 2460581.6094816495], [2460581.6102645863, 2460581.6104882825], [2460581.610935675, 2460581.611047523], [2460581.6126133967, 2460581.6129489406], [2460581.6147385105, 2460581.6157451435], [2460581.6174228652, 2460581.6176465615], [2460581.61831765, 2460581.618765042], [2460581.6191005865, 2460581.619436131], [2460581.6208901564, 2460581.6210020045], [2460581.6211138526, 2460581.621337549], [2460581.6222323338, 2460581.6229034225], [2460581.624692992, 2460581.6253640805], [2460581.625587777, 2460581.625811473], [2460581.626929954, 2460581.6270418023], [2460581.6307327896, 2460581.631068334], [2460581.632969752, 2460581.633193448], [2460581.634200081, 2460581.6345356256], [2460581.63487117, 2460581.6354304105], [2460581.6367725874, 2460581.6369962837], [2460581.6376673724, 2460581.6380029167], [2460581.638450309, 2460581.6385621573], [2460581.6386740054, 2460581.6388977016], [2460581.639456942, 2460581.6397924866], [2460581.6407991196, 2460581.6412465116], [2460581.6423649928, 2460581.642476841], [2460581.643595322, 2460581.6449374994], [2460581.645608588, 2460581.6458322844], [2460581.646727069, 2460581.646838917], [2460581.646950765, 2460581.6471744613], [2460581.6473981575, 2460581.6476218537], [2460581.647733702, 2460581.6482929424], [2460581.6500825123, 2460581.6505299048], [2460581.6510891453, 2460581.6513128416], [2460581.651536538, 2460581.651760234], [2460581.652207626, 2460581.6524313223], [2460581.6528787147, 2460581.653102411], [2460581.6557867657, 2460581.65612231], [2460581.656234158, 2460581.656905247], [2460581.657800032, 2460581.6580237276], [2460581.6589185125, 2460581.659254057], [2460581.6599251456, 2460581.66026069], [2460581.661155475, 2460581.661267323], [2460581.662273956, 2460581.6627213485], [2460581.663168741, 2460581.663280589], [2460581.6641753735, 2460581.6643990697], [2460581.6652938547, 2460581.665629399], [2460581.667642665, 2460581.6679782094], [2460581.670998108, 2460581.6712218043], [2460581.6721165893, 2460581.67267583], [2460581.6773734502, 2460581.6775971465], [2460581.67916302, 2460581.679274868], [2460581.6802815013, 2460581.6871042354]] freq_flags: [[46859741.2109375, 46981811.5234375], [49911499.0234375, 50033569.3359375], [54428100.5859375, 54916381.8359375], [62240600.5859375, 63583374.0234375], [65902709.9609375, 67001342.7734375], [69931030.2734375, 70053100.5859375], [77987670.8984375, 78109741.2109375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [124374389.6484375, 125595092.7734375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136337280.2734375, 136459350.5859375], [136825561.5234375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [147445678.7109375, 147567749.0234375], [147933959.9609375, 148056030.2734375], [148300170.8984375, 148544311.5234375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155258178.7109375, 155380249.0234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187728881.8359375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191268920.8984375], [191390991.2109375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223007202.1484375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [9, Jee], [15, Jnn], [16, Jee], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [33, Jee], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [93, Jee], [96, Jee], [97, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [117, Jee], [117, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [127, Jnn], [130, Jee], [130, Jnn], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [145, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [191, Jee], [193, Jee], [194, Jee], [194, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [218, Jnn], [221, Jee], [232, Jee], [232, Jnn], [234, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 88.59 minutes.