Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1944 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460582/zen.2460582.25253.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1944 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460582/zen.2460582.25253.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
32.892% of waterfall flagged to start. 34.635% of waterfall flagged after flagging z > 5.0 outliers.
35.199% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice
Mean of empty slice
Flagging an additional 0 integrations and 4 channels. Flagging 12 channels previously flagged 25.00% or more. Flagging 396 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 43.011% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1944 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460582/zen.2460582.25253.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460582/2460582_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460582.2535347454, 2460582.25387029], [2460582.253982138, 2460582.254093986], [2460582.255995404, 2460582.256107252], [2460582.258344214, 2460582.25856791], [2460582.273667405, 2460582.2740029492], [2460582.2755688224, 2460582.2756806705], [2460582.276351759, 2460582.2765754554], [2460582.2776939366, 2460582.278141329], [2460582.278253177, 2460582.2837337344], [2460582.2838455825, 2460582.2849640637], [2460582.285299608, 2460582.286865481], [2460582.2873128736, 2460582.2874247218], [2460582.288431355, 2460582.288766899], [2460582.290556469, 2460582.290780165], [2460582.2933526714, 2460582.2934645195], [2460582.2970436593, 2460582.2972673555], [2460582.298385836, 2460582.2987213805], [2460582.3003991023, 2460582.3006227985], [2460582.3076692293, 2460582.3078929256], [2460582.308340318, 2460582.3085640143], [2460582.3093469506, 2460582.309682495], [2460582.309794343, 2460582.311583913], [2460582.311695761, 2460582.3121431535], [2460582.3122550016, 2460582.312478698], [2460582.3129260903, 2460582.3131497866], [2460582.3140445715, 2460582.3142682677], [2460582.315051204, 2460582.3152749003], [2460582.316952622, 2460582.31706447], [2460582.3171763183, 2460582.3176237107], [2460582.320084369, 2460582.320196217], [2460582.325005686, 2460582.325229382], [2460582.3253412303, 2460582.3254530784], [2460582.325564926, 2460582.325676774], [2460582.3272426478, 2460582.327466344], [2460582.3286966733, 2460582.3288085214], [2460582.3289203695, 2460582.3290322176], [2460582.3445791043, 2460582.3454738893], [2460582.3455857374, 2460582.3593430547], [2460582.3594549024, 2460582.360125991], [2460582.3604615354, 2460582.3605733835], [2460582.3615800166, 2460582.361803713], [2460582.3623629534, 2460582.3625866496], [2460582.363034042, 2460582.3635932826], [2460582.3637051308, 2460582.364152523], [2460582.3642643713, 2460582.3723174348], [2460582.372541131, 2460582.3729885234], [2460582.3731003716, 2460582.373659612], [2460582.3737714603, 2460582.3742188527], [2460582.374330701, 2460582.374442549], [2460582.374554397, 2460582.3751136377], [2460582.375225486, 2460582.375337334], [2460582.37556103, 2460582.375672878], [2460582.3763439665, 2460582.3764558146], [2460582.3775742957, 2460582.377797992], [2460582.3810415873, 2460582.3812652836], [2460582.38204822, 2460582.382271916], [2460582.383278549, 2460582.3833903973], [2460582.3864102964, 2460582.3866339927], [2460582.3888709545, 2460582.3889828026], [2460582.390436828, 2460582.3906605244], [2460582.391107917, 2460582.391331613], [2460582.395358145, 2460582.395469993], [2460582.3958055372, 2460582.3959173854], [2460582.396476626, 2460582.396588474], [2460582.3968121703, 2460582.3969240184], [2460582.3971477146, 2460582.397483259], [2460582.397595107, 2460582.397706955], [2460582.3978188033, 2460582.3979306514], [2460582.398266196, 2460582.398378044], [2460582.398489892, 2460582.39860174], [2460582.398825436, 2460582.399832069], [2460582.399943917, 2460582.400055765], [2460582.4002794614, 2460582.4015097907], [2460582.401733487, 2460582.401845335], [2460582.401957183, 2460582.4022927275], [2460582.40274012, 2460582.402851968], [2460582.4034112087, 2460582.403523057], [2460582.403970449, 2460582.4040822973], [2460582.4054244743, 2460582.4064311073], [2460582.409786551, 2460582.4101220947], [2460582.410569487, 2460582.4107931834], [2460582.4116879683, 2460582.4117998164], [2460582.412359057, 2460582.412470905], [2460582.4232083233, 2460582.423655716], [2460582.4242149564, 2460582.4243268045], [2460582.4255571337, 2460582.42578083], [2460582.4262282224, 2460582.4263400706], [2460582.4285770324, 2460582.4286888805], [2460582.4303666023, 2460582.4304784504], [2460582.4338338934, 2460582.4339457415], [2460582.4400973874, 2460582.4404329318], [2460582.4482622994, 2460582.4484859956], [2460582.44882154, 2460582.4491570843], [2460582.4578812364, 2460582.4579930846], [2460582.458328629, 2460582.458440477], [2460582.460901135, 2460582.461012983], [2460582.461572224, 2460582.461684072], [2460582.4685068065, 2460582.4686186546], [2460582.48248782, 2460582.4827115163], [2460582.484612934, 2460582.48483663], [2460582.4851721744, 2460582.4852840225], [2460582.4853958706, 2460582.485619567], [2460582.4866262, 2460582.486738048], [2460582.4869617443, 2460582.4871854405], [2460582.4907645797, 2460582.490876428], [2460582.4956858964, 2460582.4957977445], [2460582.4960214407, 2460582.496245137], [2460582.5021730866, 2460582.5022849347], [2460582.5065351627, 2460582.506982555], [2460582.5081010363, 2460582.5083247325], [2460582.513022353, 2460582.513246049], [2460582.515147467, 2460582.5153711634], [2460582.5157067077, 2460582.515930404], [2460582.516042252, 2460582.5161541], [2460582.518391062, 2460582.51850291], [2460582.5188384545, 2460582.5196213913], [2460582.5215228093, 2460582.5216346574], [2460582.522864986, 2460582.5229768343], [2460582.523759771, 2460582.5238716193], [2460582.5240953155, 2460582.524542708], [2460582.5249901004, 2460582.5251019485], [2460582.526332278, 2460582.526444126], [2460582.529799569, 2460582.529911417], [2460582.5322602275, 2460582.5323720756], [2460582.5337142525, 2460582.5339379488], [2460582.5372933922, 2460582.5375170885], [2460582.539082962, 2460582.53919481], [2460582.5419910126, 2460582.5421028608], [2460582.544339823, 2460582.5446753674], [2460582.5447872155, 2460582.5448990637], [2460582.547583418, 2460582.548366355], [2460582.551050709, 2460582.551162557], [2460582.5522810384, 2460582.553846912], [2460582.5544061526, 2460582.554629849], [2460582.555860178, 2460582.555972026], [2460582.557202355, 2460582.557985292], [2460582.55809714, 2460582.558320836], [2460582.5595511654, 2460582.5597748617], [2460582.561228887, 2460582.5613407353], [2460582.5617881278, 2460582.561899976], [2460582.562459216, 2460582.564472482], [2460582.565367267, 2460582.5663739], [2460582.566485748, 2460582.5665975963], [2460582.567156837, 2460582.5681634694], [2460582.568610862, 2460582.568834558], [2460582.5710715204, 2460582.5711833686], [2460582.571518913, 2460582.571630761], [2460582.5718544573, 2460582.572637394], [2460582.5736440266, 2460582.5744269635], [2460582.575992837, 2460582.5762165333], [2460582.578006103, 2460582.5781179513], [2460582.5783416475, 2460582.5784534956], [2460582.5789008876, 2460582.5796838244], [2460582.5806904575, 2460582.581361546], [2460582.582032635, 2460582.582144483], [2460582.582368179, 2460582.5824800273], [2460582.583151116, 2460582.583262964], [2460582.584716989, 2460582.5848288373], [2460582.5849406854, 2460582.5850525335], [2460582.586394711, 2460582.586618407], [2460582.5868421034, 2460582.58762504], [2460582.5886316733, 2460582.5888553695], [2460582.589302762, 2460582.58941461], [2460582.5896383063, 2460582.5899738506], [2460582.5904212426, 2460582.590980483], [2460582.5919871163, 2460582.5924345087], [2460582.5933292937, 2460582.593664838], [2460582.5940003823, 2460582.5941122305], [2460582.5950070154, 2460582.5951188635], [2460582.5966847367, 2460582.596796585], [2460582.597020281, 2460582.598026914], [2460582.600711269, 2460582.601046813], [2460582.601270509, 2460582.602165294], [2460582.6048496487, 2460582.605185193], [2460582.6068629147, 2460582.606974763], [2460582.6102183578, 2460582.6107775983], [2460582.6124553196, 2460582.6140211932], [2460582.6161463074, 2460582.6162581556], [2460582.616481852, 2460582.616817396], [2460582.6171529405, 2460582.6184951174], [2460582.6197254467, 2460582.6205083835], [2460582.6212913203, 2460582.62308089], [2460582.6240875227, 2460582.6256533964], [2460582.6258770926, 2460582.626100789], [2460582.62721927, 2460582.6276666624], [2460582.628114055, 2460582.6285614474], [2460582.6286732955, 2460582.6287851436], [2460582.62900884, 2460582.6294562323], [2460582.629791776, 2460582.6301273205], [2460582.6309102573, 2460582.6320287385], [2460582.6322524347, 2460582.632476131], [2460582.6328116753, 2460582.6331472197], [2460582.633594612, 2460582.6338183084], [2460582.634601245, 2460582.6348249414], [2460582.6354960296, 2460582.635719726], [2460582.635943422, 2460582.636614511], [2460582.636838207, 2460582.6371737514], [2460582.638739625, 2460582.638851473], [2460582.6391870175, 2460582.639522562], [2460582.63963441, 2460582.6400818024], [2460582.6414239793, 2460582.6417595237], [2460582.64198322, 2460582.642206916], [2460582.643884638, 2460582.644220182], [2460582.6444438784, 2460582.6445557266], [2460582.644891271, 2460582.645114967], [2460582.645897904, 2460582.6462334483], [2460582.6466808403, 2460582.6469045365], [2460582.647351929, 2460582.6476874733], [2460582.6480230177, 2460582.648134866], [2460582.6486941064, 2460582.6489178026], [2460582.6490296507, 2460582.649365195], [2460582.6498125875, 2460582.6499244357], [2460582.650036284, 2460582.65025998], [2460582.650371828, 2460582.6505955243], [2460582.6507073725, 2460582.651042917], [2460582.6514903093, 2460582.6517140055], [2460582.6518258536, 2460582.6519377017], [2460582.6521613975, 2460582.652496942], [2460582.652832486, 2460582.6529443343], [2460582.6530561824, 2460582.6531680305], [2460582.653391727, 2460582.653503575], [2460582.6538391192, 2460582.6539509674], [2460582.6540628155, 2460582.65439836], [2460582.654510208, 2460582.655516841], [2460582.6559642334, 2460582.656299778], [2460582.656411626, 2460582.656523474], [2460582.6567471703, 2460582.6570827146], [2460582.657306411, 2460582.657530107], [2460582.6576419547, 2460582.6582011953], [2460582.6583130434, 2460582.6585367396], [2460582.658760436, 2460582.65909598], [2460582.6593196765, 2460582.659655221], [2460582.659767069, 2460582.659990765], [2460582.6603263095, 2460582.660773702], [2460582.66088555, 2460582.660997398], [2460582.6612210944, 2460582.661668487], [2460582.661892183, 2460582.66267512], [2460582.662898816, 2460582.6631225124], [2460582.6635699044, 2460582.6637936006], [2460582.664352841, 2460582.6644646893], [2460582.6646883856, 2460582.66502393], [2460582.6654713224, 2460582.666030563], [2460582.666925348, 2460582.6673727403], [2460582.6674845885, 2460582.667931981], [2460582.6686030696, 2460582.668826766], [2460582.6691623097, 2460582.6697215503], [2460582.6707281834, 2460582.6709518796], [2460582.6710637277, 2460582.671399272], [2460582.6718466645, 2460582.6719585126], [2460582.672182209, 2460582.6726296013], [2460582.675873196, 2460582.6760968925], [2460582.677774614, 2460582.6778864623], [2460582.679340488, 2460582.687281703]] freq_flags: [[47958374.0234375, 48080444.3359375], [49911499.0234375, 50033569.3359375], [54183959.9609375, 55038452.1484375], [62240600.5859375, 63583374.0234375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124496459.9609375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129867553.7109375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137069702.1484375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142684936.5234375, 142807006.8359375], [142929077.1484375, 143295288.0859375], [143783569.3359375, 144027709.9609375], [144149780.2734375, 144271850.5859375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153427124.0234375, 153549194.3359375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [157577514.6484375, 157699584.9609375], [158187866.2109375, 158309936.5234375], [169906616.2109375, 170150756.8359375], [170272827.1484375, 170394897.4609375], [170516967.7734375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191513061.5234375], [195663452.1484375, 195785522.4609375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201644897.4609375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [222885131.8359375, 223617553.7109375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[5, Jee], [8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [20, Jee], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jee], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jnn], [82, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [99, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [125, Jee], [125, Jnn], [127, Jee], [130, Jee], [130, Jnn], [131, Jee], [134, Jee], [136, Jee], [136, Jnn], [142, Jnn], [144, Jee], [144, Jnn], [155, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [194, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [227, Jee], [231, Jee], [232, Jee], [232, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 51.54 minutes.