Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1944 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460583/zen.2460583.25247.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1944 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460583/zen.2460583.25247.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
31.337% of waterfall flagged to start. 32.764% of waterfall flagged after flagging z > 5.0 outliers.
33.250% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice
Mean of empty slice
Flagging an additional 0 integrations and 6 channels. Flagging 9 channels previously flagged 25.00% or more. Flagging 293 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.322% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1944 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460583/zen.2460583.25247.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460583/2460583_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460583.2568313656, 2460583.257055062], [2460583.2588446313, 2460583.2589564794], [2460583.25951572, 2460583.259627568], [2460583.261417138, 2460583.261528986], [2460583.261640834, 2460583.2618645304], [2460583.2673450876, 2460583.267568784], [2460583.268575417, 2460583.268687265], [2460583.273832278, 2460583.274055974], [2460583.2743915184, 2460583.2745033666], [2460583.274615214, 2460583.2747270623], [2460583.2758455435, 2460583.2759573916], [2460583.276181088, 2460583.276292936], [2460583.276404784, 2460583.276516632], [2460583.2766284803, 2460583.2770758728], [2460583.277411417, 2460583.277523265], [2460583.2776351133, 2460583.2777469615], [2460583.278194354, 2460583.278306202], [2460583.2787535945, 2460583.2788654426], [2460583.2789772907, 2460583.279089139], [2460583.279312835, 2460583.280095772], [2460583.2803194677, 2460583.280543164], [2460583.28076686, 2460583.281773493], [2460583.282444582, 2460583.28255643], [2460583.283451215, 2460583.283563063], [2460583.2864711136, 2460583.28669481], [2460583.288819924, 2460583.288931772], [2460583.2894910127, 2460583.289938405], [2460583.2904976457, 2460583.290609494], [2460583.2910568863, 2460583.2912805825], [2460583.292287215, 2460583.2925109114], [2460583.2945241774, 2460583.2946360256], [2460583.294859722, 2460583.295083418], [2460583.2957545067, 2460583.295866355], [2460583.2969848355, 2460583.2970966836], [2460583.3008995196, 2460583.3010113677], [2460583.3020180007, 2460583.302241697], [2460583.3043668107, 2460583.304478659], [2460583.3050378994, 2460583.3053734438], [2460583.305708988, 2460583.305820836], [2460583.3059326843, 2460583.3060445325], [2460583.3062682287, 2460583.306380077], [2460583.3071630136, 2460583.3072748617], [2460583.307498558, 2460583.3092881273], [2460583.3093999755, 2460583.3095118236], [2460583.30973552, 2460583.3102947604], [2460583.3104066085, 2460583.3105184566], [2460583.3130909633, 2460583.3133146595], [2460583.3134265076, 2460583.313650204], [2460583.3145449883, 2460583.3146568364], [2460583.316334558, 2460583.3166701025], [2460583.3184596724, 2460583.318907065], [2460583.320249242, 2460583.32036109], [2460583.3206966342, 2460583.3209203305], [2460583.3211440267, 2460583.321367723], [2460583.3218151154, 2460583.3220388116], [2460583.322598052, 2460583.3227099003], [2460583.3228217484, 2460583.3229335966], [2460583.3230454447, 2460583.323157293], [2460583.3281904575, 2460583.3283023057], [2460583.32863785, 2460583.3289733944], [2460583.3298681793, 2460583.3300918755], [2460583.330874812, 2460583.33098666], [2460583.332888078, 2460583.332999926], [2460583.333111774, 2460583.3332236223], [2460583.334677648, 2460583.334789496], [2460583.337026458, 2460583.337138306], [2460583.3395989644, 2460583.3397108126], [2460583.3430662556, 2460583.3434018], [2460583.3437373443, 2460583.3438491924], [2460583.3439610405, 2460583.344408433], [2460583.344520281, 2460583.3448558254], [2460583.3449676735, 2460583.3457506103], [2460583.3459743066, 2460583.3460861547], [2460583.346198003, 2460583.346533547], [2460583.3467572434, 2460583.347316484], [2460583.347428332, 2460583.34754018], [2460583.347652028, 2460583.356935421], [2460583.357047269, 2460583.3572709654], [2460583.3573828135, 2460583.358053902], [2460583.359396079, 2460583.3596197753], [2460583.360179016, 2460583.360402712], [2460583.3606264084, 2460583.3607382565], [2460583.361297497, 2460583.361409345], [2460583.3615211933, 2460583.3616330414], [2460583.3619685858, 2460583.362080434], [2460583.36230413, 2460583.365435877], [2460583.365771421, 2460583.3661069656], [2460583.3662188137, 2460583.366330662], [2460583.36644251, 2460583.366554358], [2460583.366666206, 2460583.3667780543], [2460583.3668899024, 2460583.3670017505], [2460583.3671135986, 2460583.367449143], [2460583.367560991, 2460583.3704690416], [2460583.3705808898, 2460583.370692738], [2460583.3712519784, 2460583.3713638266], [2460583.3722586115, 2460583.3723704596], [2460583.372594156, 2460583.3729297], [2460583.3733770926, 2460583.3734889408], [2460583.373824485, 2460583.373936333], [2460583.3793050423, 2460583.3795287386], [2460583.388588435, 2460583.388700283], [2460583.393062359, 2460583.3931742073], [2460583.397871828, 2460583.3980955244], [2460583.4035760816, 2460583.4036879297], [2460583.4050301067, 2460583.405253803], [2460583.406148588, 2460583.406260436], [2460583.407378917, 2460583.4077144614], [2460583.4246035255, 2460583.4247153737], [2460583.42493907, 2460583.425050918], [2460583.427623424, 2460583.4280708167], [2460583.4319855007, 2460583.432097349], [2460583.432768437, 2460583.4329921333], [2460583.4341106145, 2460583.4343343107], [2460583.437577906, 2460583.437689754], [2460583.439143779, 2460583.4392556273], [2460583.442722919, 2460583.443394007], [2460583.444288792, 2460583.44440064], [2460583.4465257544, 2460583.4467494506], [2460583.447867932, 2460583.44797978], [2460583.45032859, 2460583.450552286], [2460583.456592084, 2460583.456703932], [2460583.461177856, 2460583.4612897043], [2460583.4622963374, 2460583.4624081855], [2460583.4636385147, 2460583.463750363], [2460583.4641977553, 2460583.4643096034], [2460583.464980692, 2460583.4650925403], [2460583.465763629, 2460583.465875477], [2460583.4669939578, 2460583.467217654], [2460583.468336135, 2460583.4684479833], [2460583.4705730975, 2460583.4707967937], [2460583.4748233254, 2460583.475270718], [2460583.479520946, 2460583.479632794], [2460583.4836593256, 2460583.4837711737], [2460583.484106718, 2460583.4843304143], [2460583.484889655, 2460583.485001503], [2460583.487685858, 2460583.487797706], [2460583.489475427, 2460583.4898109715], [2460583.4918242376, 2460583.4919360857], [2460583.493166415, 2460583.4942848957], [2460583.4952915288, 2460583.495403377], [2460583.495515225, 2460583.495738921], [2460583.4959626175, 2460583.4960744656], [2460583.4969692505, 2460583.497304795], [2460583.4977521873, 2460583.4978640354], [2460583.4990943647, 2460583.499989149], [2460583.5001009973, 2460583.5002128454], [2460583.500883934, 2460583.500995782], [2460583.5012194784, 2460583.5014431747], [2460583.5020024152, 2460583.5021142634], [2460583.5031208964, 2460583.504798618], [2460583.5054697064, 2460583.5055815545], [2460583.5056934026, 2460583.5058052507], [2460583.5067000357, 2460583.50703558], [2460583.5074829725, 2460583.5075948206], [2460583.508936998, 2460583.5101673272], [2460583.5103910235, 2460583.5109502636], [2460583.5127398334, 2460583.5149767958], [2460583.5168782133, 2460583.5188914794], [2460583.521463986, 2460583.5222469224], [2460583.5231417073, 2460583.5243720366], [2460583.5244838847, 2460583.524707581], [2460583.526497151, 2460583.526720847], [2460583.526832695, 2460583.52828672], [2460583.529069657, 2460583.5294052013], [2460583.5297407457, 2460583.529964442], [2460583.5304118344, 2460583.5315303155], [2460583.5337672774, 2460583.534438366], [2460583.534550214, 2460583.535333151], [2460583.536227936, 2460583.536451632], [2460583.5377938095, 2460583.539471531], [2460583.539583379, 2460583.5399189233], [2460583.541596645, 2460583.5418203413], [2460583.5428269743, 2460583.5429388224], [2460583.5430506705, 2460583.5431625186], [2460583.5432743668, 2460583.543386215], [2460583.5490904683, 2460583.5494260127], [2460583.552222215, 2460583.552334063], [2460583.553005152, 2460583.55490657], [2460583.556472443, 2460583.5589331016], [2460583.5600515828, 2460583.561170064], [2460583.561281912, 2460583.5619530003], [2460583.5630714814, 2460583.564413659], [2460583.5660913805, 2460583.5675454056], [2460583.56788095, 2460583.5682164943], [2460583.568887583, 2460583.5694468236], [2460583.570677153, 2460583.570789001], [2460583.571012697, 2460583.573025963], [2460583.5744799883, 2460583.574927381], [2460583.5757103176, 2460583.5768287987], [2460583.5789539125, 2460583.5797368493], [2460583.580407938, 2460583.580519786], [2460583.582309356, 2460583.5828685965], [2460583.5829804447, 2460583.583427837], [2460583.584770014, 2460583.584881862], [2460583.587789913, 2460583.5879017613], [2460583.589355787, 2460583.589579483], [2460583.592040141, 2460583.5923756855], [2460583.5924875336, 2460583.592823078], [2460583.592934926, 2460583.5932704704], [2460583.5943889515, 2460583.5945007997], [2460583.594724496, 2460583.594836344], [2460583.596402217, 2460583.5965140653], [2460583.5969614577, 2460583.597073306], [2460583.5977443946, 2460583.5985273314], [2460583.6004287493, 2460583.6005405975], [2460583.6022183187, 2460583.6031131037], [2460583.6057974584, 2460583.6059093066], [2460583.606915939, 2460583.6073633316], [2460583.607698876, 2460583.6080344203], [2460583.608817357, 2460583.6091529015], [2460583.6093765977, 2460583.609488446], [2460583.609600294, 2460583.609712142], [2460583.6110543194, 2460583.6111661675], [2460583.61161356, 2460583.6119491044], [2460583.614074218, 2460583.6142979143], [2460583.61575194, 2460583.6161993323], [2460583.6163111804, 2460583.6165348766], [2460583.616870421, 2460583.617094117], [2460583.6186599904, 2460583.6188836866], [2460583.622127282, 2460583.62223913], [2460583.624699788, 2460583.6250353325], [2460583.6268249024, 2460583.627607839], [2460583.6289500166, 2460583.6291737123], [2460583.629956649, 2460583.6302921935], [2460583.6304040416, 2460583.630739586], [2460583.6332002445, 2460583.6333120926], [2460583.633871333, 2460583.6342068776], [2460583.637226776, 2460583.6374504725], [2460583.6393518904, 2460583.6394637385], [2460583.6417007004, 2460583.6420362447], [2460583.6427073334, 2460583.6429310297], [2460583.645056144, 2460583.6455035363], [2460583.648635283, 2460583.6488589793], [2460583.6532210554, 2460583.6535565997], [2460583.655793562, 2460583.65590541], [2460583.664294018, 2460583.6649651066], [2460583.6659717397, 2460583.666195436], [2460583.668432398, 2460583.668544246], [2460583.672570778, 2460583.6731300186], [2460583.674919588, 2460583.675031436], [2460583.6752551324, 2460583.6753669805], [2460583.6771565503, 2460583.6772683985], [2460583.6774920947, 2460583.677827639], [2460583.6783868796, 2460583.68722288]] freq_flags: [[46859741.2109375, 46981811.5234375], [47714233.3984375, 47836303.7109375], [47958374.0234375, 48202514.6484375], [49911499.0234375, 50033569.3359375], [52352905.2734375, 52474975.5859375], [52597045.8984375, 52719116.2109375], [54183959.9609375, 55038452.1484375], [60287475.5859375, 60531616.2109375], [62240600.5859375, 63339233.3984375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [124496459.9609375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 136947631.8359375], [137069702.1484375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [16, Jee], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jnn], [82, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [99, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [111, Jee], [116, Jee], [116, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [125, Jee], [125, Jnn], [126, Jee], [127, Jee], [130, Jee], [130, Jnn], [131, Jee], [136, Jee], [136, Jnn], [142, Jnn], [144, Jee], [144, Jnn], [145, Jnn], [155, Jee], [155, Jnn], [161, Jnn], [164, Jee], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [194, Jee], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [205, Jnn], [206, Jee], [208, Jee], [212, Jnn], [213, Jee], [215, Jnn], [216, Jee], [218, Jnn], [227, Jee], [231, Jee], [232, Jee], [232, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [268, Jnn], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 46.95 minutes.