Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1932 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460585/zen.2460585.25237.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1932 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460585/zen.2460585.25237.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
31.486% of waterfall flagged to start. 33.723% of waterfall flagged after flagging z > 5.0 outliers.
34.270% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 8 channels. Flagging 25 channels previously flagged 25.00% or more. Flagging 480 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 1 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 43.865% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1932 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460585/zen.2460585.25237.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460585/2460585_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460585.2539317277, 2460585.254043576], [2460585.2547146645, 2460585.254938361], [2460585.255273905, 2460585.2553857532], [2460585.2567279306, 2460585.2568397787], [2460585.257510867, 2460585.257622715], [2460585.2608663104, 2460585.2609781586], [2460585.261537399, 2460585.262544032], [2460585.263774361, 2460585.264892842], [2460585.270037855, 2460585.270149703], [2460585.2705970956, 2460585.271939273], [2460585.272051121, 2460585.2726103617], [2460585.27272221, 2460585.2775316783], [2460585.2776435264, 2460585.2778672227], [2460585.277979071, 2460585.278090919], [2460585.278202767, 2460585.278314615], [2460585.279097552, 2460585.2792094], [2460585.2794330963, 2460585.2795449444], [2460585.2801041845, 2460585.2802160326], [2460585.280775273, 2460585.2808871213], [2460585.2820056025, 2460585.2821174506], [2460585.2891638814, 2460585.2892757296], [2460585.2937496537, 2460585.29397335], [2460585.2945325905, 2460585.295874768], [2460585.297440641, 2460585.2978880336], [2460585.2979998817, 2460585.29811173], [2460585.298223578, 2460585.2985591223], [2460585.2986709704, 2460585.2988946666], [2460585.2990065147, 2460585.299118363], [2460585.2997894515, 2460585.2999012996], [2460585.300236844, 2460585.300348692], [2460585.3005723883, 2460585.3009079327], [2460585.3018027176, 2460585.302026414], [2460585.3021382615, 2460585.302473806], [2460585.302585654, 2460585.3040396795], [2460585.304375224, 2460585.304487072], [2460585.30459892, 2460585.304710768], [2460585.3059410974, 2460585.30638849], [2460585.3067240342, 2460585.3068358824], [2460585.3069477305, 2460585.307395123], [2460585.3092965405, 2460585.3094083886], [2460585.3105268697, 2460585.310750566], [2460585.310974262, 2460585.3111979584], [2460585.3144415533, 2460585.3145534014], [2460585.317125908, 2460585.3173496043], [2460585.324284187, 2460585.3245078833], [2460585.32585006, 2460585.3260737564], [2460585.3294292, 2460585.329541048], [2460585.3305476806, 2460585.330883225], [2460585.3315543137, 2460585.331666162], [2460585.332896491, 2460585.333008339], [2460585.3332320354, 2460585.3732736576], [2460585.373609202, 2460585.374615835], [2460585.374727683, 2460585.3752869237], [2460585.3753987714, 2460585.3774120375], [2460585.378977911, 2460585.379089759], [2460585.379649, 2460585.379760848], [2460585.3805437847, 2460585.3817741135], [2460585.3818859616, 2460585.3819978097], [2460585.383116291, 2460585.383228139], [2460585.3847940126, 2460585.3849058608], [2460585.3908338104, 2460585.3909456586], [2460585.394748494, 2460585.394860342], [2460585.3950840384, 2460585.3954195827], [2460585.3985513295, 2460585.3986631776], [2460585.3995579625, 2460585.399893507], [2460585.4047029754, 2460585.4048148235], [2460585.413538976, 2460585.413650824], [2460585.4138745205, 2460585.4139863686], [2460585.414881153, 2460585.414993001], [2460585.4184602927, 2460585.418572141], [2460585.418795837, 2460585.4191313814], [2460585.4203617107, 2460585.420473559], [2460585.4208091027, 2460585.420920951], [2460585.421256495, 2460585.422039432], [2460585.4227105207, 2460585.422934217], [2460585.4236053056, 2460585.4237171537], [2460585.42394085, 2460585.424052698], [2460585.425954116, 2460585.426177812], [2460585.4266252043, 2460585.4268489005], [2460585.4269607486, 2460585.427296293], [2460585.4279673817, 2460585.428191078], [2460585.428302926, 2460585.4285266222], [2460585.430092496, 2460585.430316192], [2460585.4314346733, 2460585.4316583695], [2460585.4330005464, 2460585.4331123945], [2460585.4333360908, 2460585.4338953313], [2460585.4381455593, 2460585.4384811036], [2460585.4385929517, 2460585.439711433], [2460585.4415010028, 2460585.441836547], [2460585.441948395, 2460585.442619484], [2460585.442731332, 2460585.44284318], [2460585.442955028, 2460585.443178724], [2460585.448100041, 2460585.4482118892], [2460585.4484355855, 2460585.449218522], [2460585.44933037, 2460585.4496659143], [2460585.4517910285, 2460585.4519028766], [2460585.4520147247, 2460585.4525739653], [2460585.4529095097, 2460585.453245054], [2460585.4539161427, 2460585.454027991], [2460585.454475383, 2460585.454699079], [2460585.45760713, 2460585.457718978], [2460585.4578308263, 2460585.4580545225], [2460585.458501915, 2460585.4589493074], [2460585.4590611556, 2460585.4591730037], [2460585.4604033325, 2460585.460962573], [2460585.461074421, 2460585.4624165986], [2460585.4657720416, 2460585.467002371], [2460585.467114219, 2460585.467226067], [2460585.4674497633, 2460585.4676734596], [2460585.4677853077, 2460585.468009004], [2460585.470805207, 2460585.4721473837], [2460585.47237108, 2460585.4729303205], [2460585.473265865, 2460585.473489561], [2460585.4738251055, 2460585.4739369536], [2460585.4765094602, 2460585.4767331565], [2460585.476845004, 2460585.4770687004], [2460585.4790819664, 2460585.4791938146], [2460585.4853454605, 2460585.4855691567], [2460585.4894838403, 2460585.4895956884], [2460585.4918326507, 2460585.492168195], [2460585.4923918913, 2460585.4926155875], [2460585.49362222, 2460585.4937340682], [2460585.494517005, 2460585.4959710306], [2460585.498319841, 2460585.4986553853], [2460585.4993264736, 2460585.49955017], [2460585.5039122463, 2460585.5042477907], [2460585.504359639, 2460585.504471487], [2460585.505142575, 2460585.5052544232], [2460585.5074913856, 2460585.5076032337], [2460585.5136430315, 2460585.5138667277], [2460585.5168866264, 2460585.5171103226], [2460585.5201302217, 2460585.52024207], [2460585.5271766526, 2460585.5272885007], [2460585.527847741, 2460585.528071437], [2460585.5284069814, 2460585.5285188295], [2460585.529189918, 2460585.5293017663], [2460585.5294136144, 2460585.5295254625], [2460585.5296373107, 2460585.529749159], [2460585.5301965512, 2460585.5303083993], [2460585.5313150324, 2460585.5314268805], [2460585.5316505767, 2460585.531762425], [2460585.532769058, 2460585.532880906], [2460585.533104602, 2460585.53321645], [2460585.5355652603, 2460585.5356771084], [2460585.5366837415, 2460585.5367955896], [2460585.5369074377, 2460585.537131134], [2460585.537242982, 2460585.53735483], [2460585.5374666783, 2460585.5376903745], [2460585.538361463, 2460585.5384733113], [2460585.5390325515, 2460585.5392562477], [2460585.540374729, 2460585.540598425], [2460585.542387995, 2460585.5427235393], [2460585.544960501, 2460585.5450723493], [2460585.5503292102, 2460585.5506647546], [2460585.5507766027, 2460585.5514476914], [2460585.551895084, 2460585.552006932], [2460585.5565927043, 2460585.5568164005], [2460585.5588296666, 2460585.5589415147], [2460585.5597244515, 2460585.5608429327], [2460585.562408806, 2460585.563639135], [2460585.56632349, 2460585.566435338], [2460585.567665667, 2460585.567777515], [2460585.567889363, 2460585.568001211], [2460585.5681130593, 2460585.5683367555], [2460585.570909262, 2460585.5713566546], [2460585.571804047, 2460585.571915895], [2460585.5725869834, 2460585.5726988316], [2460585.573146224, 2460585.5735936165], [2460585.5754950345, 2460585.575830579], [2460585.576054275, 2460585.576166123], [2460585.5763898194, 2460585.5775083005], [2460585.577731997, 2460585.578067541], [2460585.5788504775, 2460585.5790741737], [2460585.5800808067, 2460585.580416351], [2460585.5828770096, 2460585.5829888578], [2460585.5851139715, 2460585.5853376677], [2460585.587462782, 2460585.58757463], [2460585.5893641994, 2460585.5894760475], [2460585.5895878957, 2460585.589699744], [2460585.593614428, 2460585.593726276], [2460585.594732909, 2460585.5949566048], [2460585.5958513897, 2460585.596075086], [2460585.600101618, 2460585.600213466], [2460585.6011082507, 2460585.601220099], [2460585.6026741243, 2460585.6028978205], [2460585.6059177197, 2460585.6063651117], [2460585.609496859, 2460585.6099442514], [2460585.610727188, 2460585.6108390363], [2460585.61296415, 2460585.6132996944], [2460585.6134115425, 2460585.6136352387], [2460585.615648505, 2460585.615760353], [2460585.619339492, 2460585.6197868846], [2460585.6205698214, 2460585.6207935177], [2460585.627280708, 2460585.627504404], [2460585.6276162523, 2460585.6277281004], [2460585.628511037, 2460585.628846581], [2460585.6291821254, 2460585.6292939736], [2460585.6314190878, 2460585.631530936], [2460585.6355574676, 2460585.63600486], [2460585.638912911, 2460585.639024759], [2460585.6391366073, 2460585.639695848], [2460585.640255088, 2460585.640478784], [2460585.642156506, 2460585.643163139], [2460585.643386835, 2460585.6438342277], [2460585.645288253, 2460585.6456237976], [2460585.6458474933, 2460585.6460711895], [2460585.6467422782, 2460585.6470778226], [2460585.649202937, 2460585.649426633], [2460585.654795342, 2460585.6549071902], [2460585.6559138233, 2460585.6561375195], [2460585.6587100257, 2460585.658821874], [2460585.661953621, 2460585.662065469], [2460585.662512861, 2460585.6627365574], [2460585.664078735, 2460585.664302431], [2460585.6648616716, 2460585.665085368], [2460585.6668749377, 2460585.666986786], [2460585.6675460264, 2460585.6677697226], [2460585.6678815708, 2460585.667993419], [2460585.6688882033, 2460585.6691118996], [2460585.669447444, 2460585.669559292], [2460585.671348862, 2460585.671572558], [2460585.6717962543, 2460585.6719081025], [2460585.6743687605, 2460585.674592457], [2460585.674704305, 2460585.674928001], [2460585.6752635455, 2460585.6753753936], [2460585.6754872417, 2460585.6857772674]] freq_flags: [[46859741.2109375, 46981811.5234375], [47714233.3984375, 47958374.0234375], [48080444.3359375, 48202514.6484375], [49911499.0234375, 50033569.3359375], [50277709.9609375, 50399780.2734375], [52474975.5859375, 52597045.8984375], [54550170.8984375, 54794311.5234375], [60165405.2734375, 60653686.5234375], [62362670.8984375, 62850952.1484375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108993530.2734375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124618530.2734375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129867553.7109375, 130233764.6484375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142684936.5234375, 142807006.8359375], [142929077.1484375, 143295288.0859375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153427124.0234375, 153549194.3359375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [159164428.7109375, 159286499.0234375], [160140991.2109375, 160385131.8359375], [169906616.2109375, 170150756.8359375], [170516967.7734375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [195663452.1484375, 195785522.4609375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [199935913.0859375, 200057983.3984375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [222885131.8359375, 223617553.7109375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [81, Jnn], [82, Jee], [82, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [96, Jee], [97, Jnn], [98, Jee], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [120, Jee], [120, Jnn], [121, Jee], [122, Jnn], [125, Jnn], [127, Jee], [127, Jnn], [130, Jee], [130, Jnn], [131, Jee], [134, Jee], [136, Jee], [136, Jnn], [142, Jnn], [144, Jee], [144, Jnn], [145, Jnn], [155, Jee], [155, Jnn], [159, Jnn], [160, Jnn], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jnn], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [194, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [212, Jnn], [215, Jee], [215, Jnn], [218, Jnn], [227, Jee], [231, Jee], [232, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [251, Jnn], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [272, Jnn], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 402.27 minutes.