Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1942 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460588/zen.2460588.25244.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1942 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460588/zen.2460588.25244.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
27.825% of waterfall flagged to start. 29.306% of waterfall flagged after flagging z > 5.0 outliers.
29.791% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 3 channels. Flagging 15 channels previously flagged 25.00% or more. Flagging 475 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 2 channels. Flagging 1 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.230% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1942 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460588/zen.2460588.25244.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460588/2460588_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460588.2578037097, 2460588.258251102], [2460588.2601525197, 2460588.260264368], [2460588.260376216, 2460588.260488064], [2460588.260599912, 2460588.2608236084], [2460588.261271001, 2460588.2617183933], [2460588.2618302414, 2460588.2688766723], [2460588.2689885204, 2460588.270218849], [2460588.2704425454, 2460588.2707780898], [2460588.271113634, 2460588.2716728747], [2460588.272008419, 2460588.2722321153], [2460588.2724558115, 2460588.2725676596], [2460588.2726795077, 2460588.272791356], [2460588.2742453814, 2460588.2743572295], [2460588.274692774, 2460588.274804622], [2460588.27491647, 2460588.275028318], [2460588.2754757106, 2460588.2755875587], [2460588.2756994064, 2460588.2760349507], [2460588.276482343, 2460588.2765941913], [2460588.2769297357, 2460588.277153432], [2460588.2777126725, 2460588.2778245206], [2460588.279949635, 2460588.280061483], [2460588.285206496, 2460588.285318344], [2460588.2867723694, 2460588.2868842175], [2460588.2882263944, 2460588.2883382426], [2460588.2902396605, 2460588.2904633568], [2460588.290575205, 2460588.290687053], [2460588.290798901, 2460588.2913581417], [2460588.29146999, 2460588.291581838], [2460588.2922529266, 2460588.292476623], [2460588.293035863, 2460588.29616761], [2460588.2963913064, 2460588.2965031546], [2460588.2966150027, 2460588.297845332], [2460588.29851642, 2460588.2986282683], [2460588.299411205, 2460588.30030599], [2460588.3007533825, 2460588.3015363193], [2460588.3016481674, 2460588.3018718637], [2460588.301983712, 2460588.30209556], [2460588.302207408, 2460588.302319256], [2460588.3024311042, 2460588.3028784967], [2460588.302990345, 2460588.3035495854], [2460588.30444437, 2460588.3050036104], [2460588.305451003, 2460588.305562851], [2460588.3062339397, 2460588.306345788], [2460588.306569484, 2460588.307352421], [2460588.307576117, 2460588.307687965], [2460588.308359054, 2460588.3086945983], [2460588.3088064464, 2460588.3089182945], [2460588.3090301426, 2460588.309701231], [2460588.309924927, 2460588.3112671045], [2460588.3130566743, 2460588.3131685224], [2460588.313727763, 2460588.313839611], [2460588.3143988517, 2460588.3145107], [2460588.3167476617, 2460588.316971358], [2460588.3209978896, 2460588.3211097377], [2460588.321221586, 2460588.321333434], [2460588.321445282, 2460588.32155713], [2460588.322116371, 2460588.322228219], [2460588.3226756114, 2460588.323458548], [2460588.3259192067, 2460588.326031055], [2460588.3263665987, 2460588.3269258393], [2460588.3271495355, 2460588.3273732318], [2460588.32748508, 2460588.3279324723], [2460588.3280443205, 2460588.3281561686], [2460588.3282680167, 2460588.3299457384], [2460588.3300575865, 2460588.3439267515], [2460588.3440385996, 2460588.3441504478], [2460588.344262296, 2460588.345157081], [2460588.345492625, 2460588.3459400176], [2460588.3460518657, 2460588.346275562], [2460588.3466111063, 2460588.3468348025], [2460588.3469466507, 2460588.347170347], [2460588.347282195, 2460588.3537693853], [2460588.3538812334, 2460588.3670793097], [2460588.368421487, 2460588.3687570314], [2460588.374796829, 2460588.3753560698], [2460588.3774811835, 2460588.3777048797], [2460588.3784878165, 2460588.3785996647], [2460588.379718146, 2460588.3801655383], [2460588.380948475, 2460588.3811721713], [2460588.381731412, 2460588.38184326], [2460588.3839683738, 2460588.38419207], [2460588.384303918, 2460588.3846394625], [2460588.3848631587, 2460588.3857579436], [2460588.3858697917, 2460588.38598164], [2460588.386205336, 2460588.386876425], [2460588.387994906, 2460588.388218602], [2460588.38833045, 2460588.3887778423], [2460588.3888896904, 2460588.3892252347], [2460588.393475463, 2460588.3936991594], [2460588.4023114634, 2460588.4024233115], [2460588.4033180964, 2460588.4034299445], [2460588.406337995, 2460588.4065616913], [2460588.4147266033, 2460588.4148384514], [2460588.419536072, 2460588.41964792], [2460588.420878249, 2460588.4209900973], [2460588.423003363, 2460588.423115211], [2460588.432957845, 2460588.433181541], [2460588.440004275, 2460588.4403398195], [2460588.4441426555, 2460588.4443663517], [2460588.4447018956, 2460588.4448137437], [2460588.4464914654, 2460588.44682701], [2460588.4477217947, 2460588.447833643], [2460588.448952124, 2460588.44917582], [2460588.452307567, 2460588.4526431113], [2460588.455774858, 2460588.4559985544], [2460588.468189998, 2460588.468301846], [2460588.4705388085, 2460588.4706506566], [2460588.4726639222, 2460588.4727757704], [2460588.477473391, 2460588.4775852393], [2460588.4791511125, 2460588.4793748087], [2460588.479822201, 2460588.4799340493], [2460588.4811643786, 2460588.481388075], [2460588.481499923, 2460588.481723619], [2460588.483960581, 2460588.484072429], [2460588.4853027584, 2460588.4855264546], [2460588.487987113, 2460588.4880989613], [2460588.4907833156, 2460588.491230708], [2460588.5061065066, 2460588.5062183547], [2460588.5064420504, 2460588.5066657467], [2460588.511587064, 2460588.511698912], [2460588.5187453423, 2460588.5188571904], [2460588.5210941527, 2460588.521206001], [2460588.5216533933, 2460588.5218770895], [2460588.5234429627, 2460588.523554811], [2460588.533844837, 2460588.533956685], [2460588.53720028, 2460588.537423976], [2460588.5396609385, 2460588.5397727867], [2460588.549839116, 2460588.5500628124], [2460588.553865648, 2460588.553977496], [2460588.5545367366, 2460588.5546485847], [2460588.5552078253, 2460588.5554315215], [2460588.5580040277, 2460588.558227724], [2460588.561359471, 2460588.5615831674], [2460588.564603066, 2460588.5649386104], [2460588.566616332, 2460588.5667281803], [2460588.5820513708, 2460588.582275067], [2460588.5870845355, 2460588.5873082317], [2460588.5912229153, 2460588.5913347634], [2460588.5924532446, 2460588.592676941], [2460588.5933480295, 2460588.5935717258], [2460588.5942428145, 2460588.5943546626], [2460588.5953612956, 2460588.595584992], [2460588.59569684, 2460588.5960323843], [2460588.59804565, 2460588.598157498], [2460588.600058916, 2460588.600170764], [2460588.6016247896, 2460588.601848486], [2460588.603526207, 2460588.6036380553], [2460588.6130332965, 2460588.613256993], [2460588.6165005877, 2460588.616836132], [2460588.61873755, 2460588.618961246], [2460588.6204152713, 2460588.6207508156], [2460588.62108636, 2460588.6215337524], [2460588.622204841, 2460588.622316689], [2460588.6235470185, 2460588.6237707147], [2460588.624218107, 2460588.6244418034], [2460588.6245536515, 2460588.6247773473], [2460588.6248891954, 2460588.6251128917], [2460588.625448436, 2460588.625560284], [2460588.628244639, 2460588.628468335], [2460588.6290275757, 2460588.629251272], [2460588.6300342088, 2460588.6302579045], [2460588.6304816008, 2460588.630817145], [2460588.6323830187, 2460588.632606715], [2460588.6340607405, 2460588.6349555254], [2460588.636745095, 2460588.636968791], [2460588.6415545633, 2460588.6416664114], [2460588.6426730445, 2460588.6427848926], [2460588.6437915256, 2460588.6439033737], [2460588.6478180573, 2460588.6481536017], [2460588.6517327414, 2460588.6519564376], [2460588.652515678, 2460588.6527393744], [2460588.6540815514, 2460588.6543052476], [2460588.655759273, 2460588.6559829693], [2460588.6586673236, 2460588.6587791718], [2460588.659897653, 2460588.660009501], [2460588.662022767, 2460588.6623583115], [2460588.6633649445, 2460588.6635886407], [2460588.664259729, 2460588.664371577], [2460588.6669440838, 2460588.667055932], [2460588.6739905146, 2460588.6741023627], [2460588.674214211, 2460588.6869648946]] freq_flags: [[46859741.2109375, 46981811.5234375], [49911499.0234375, 50033569.3359375], [54306030.2734375, 54794311.5234375], [60409545.8984375, 60531616.2109375], [62240600.5859375, 63461303.7109375], [66146850.5859375, 67001342.7734375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [113876342.7734375, 113998413.0859375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124496459.9609375, 125595092.7734375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 138046264.6484375], [138168334.9609375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143295288.0859375], [143783569.3359375, 144393920.8984375], [145492553.7109375, 145614624.0234375], [147445678.7109375, 147567749.0234375], [148300170.8984375, 148422241.2109375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [160140991.2109375, 160385131.8359375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [207138061.5234375, 207260131.8359375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [9, Jee], [15, Jnn], [17, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [82, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [95, Jee], [96, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [127, Jee], [130, Jee], [130, Jnn], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [144, Jee], [144, Jnn], [155, Jee], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [181, Jnn], [182, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [190, Jee], [190, Jnn], [191, Jee], [191, Jnn], [193, Jee], [194, Jee], [194, Jnn], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [206, Jee], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [218, Jnn], [232, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [251, Jnn], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 184.39 minutes.