Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1934 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460595/zen.2460595.25250.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1934 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460595/zen.2460595.25250.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
25.070% of waterfall flagged to start. 27.117% of waterfall flagged after flagging z > 5.0 outliers.
27.650% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 5 channels. Flagging 22 channels previously flagged 25.00% or more. Flagging 312 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 5 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 34.589% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1934 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460595/zen.2460595.25250.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460595/2460595_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460595.252615959, 2460595.252839655], [2460595.2532870476, 2460595.2533988957], [2460595.25373444, 2460595.253846288], [2460595.2568661873, 2460595.2570898836], [2460595.2604453266, 2460595.2605571747], [2460595.2649192507, 2460595.265031099], [2460595.265142947, 2460595.265254795], [2460595.267044365, 2460595.2673799093], [2460595.2698405674, 2460595.2699524155], [2460595.270399808, 2460595.270511656], [2460595.273196011, 2460595.273419707], [2460595.2738670995, 2460595.2742026434], [2460595.274650036, 2460595.2750974284], [2460595.2754329727, 2460595.275880365], [2460595.2759922133, 2460595.2763277576], [2460595.2764396057, 2460595.276663302], [2460595.277669935, 2460595.2778936313], [2460595.2823675554, 2460595.2824794035], [2460595.2858348466, 2460595.286058543], [2460595.286170391, 2460595.286282239], [2460595.292657581, 2460595.2928812774], [2460595.2929931255, 2460595.2931049736], [2460595.2932168217, 2460595.293664214], [2460595.2965722647, 2460595.296684113], [2460595.305967506, 2460595.306079354], [2460595.3073096834, 2460595.3074215315], [2460595.3076452278, 2460595.307868924], [2460595.3095466453, 2460595.3098821896], [2460595.310329582, 2460595.31044143], [2460595.3105532783, 2460595.3106651264], [2460595.311336215, 2460595.3116717595], [2460595.312007304, 2460595.312119152], [2460595.312231, 2460595.312342848], [2460595.313013937, 2460595.313125785], [2460595.313685025, 2460595.313796873], [2460595.3141324176, 2460595.3142442657], [2460595.314467962, 2460595.314691658], [2460595.3148035062, 2460595.324534292], [2460595.3247579876, 2460595.324981684], [2460595.325093532, 2460595.32520538], [2460595.325317228, 2460595.3254290763], [2460595.3255409244, 2460595.325988317], [2460595.326212013, 2460595.3326992034], [2460595.3328110515, 2460595.3329228996], [2460595.3330347477, 2460595.333370292], [2460595.3338176846, 2460595.334153229], [2460595.334265077, 2460595.3363901908], [2460595.336613887, 2460595.3369494313], [2460595.3372849757, 2460595.337396824], [2460595.337508672, 2460595.33762052], [2460595.3381797606, 2460595.3382916087], [2460595.338739001, 2460595.3389626974], [2460595.3391863937, 2460595.3407522673], [2460595.3411996597, 2460595.341535204], [2460595.3416470517, 2460595.3417589], [2460595.3433247735, 2460595.3435484697], [2460595.343660318, 2460595.343772166], [2460595.343995862, 2460595.3443314065], [2460595.3445551028, 2460595.344778799], [2460595.344890647, 2460595.3451143433], [2460595.3454498877, 2460595.345561736], [2460595.345785432, 2460595.3461209764], [2460595.3476868495, 2460595.348917179], [2460595.349140875, 2460595.3493645713], [2460595.353614799, 2460595.3537266473], [2460595.35831242, 2460595.358424268], [2460595.3624508, 2460595.362562648], [2460595.3628981924, 2460595.3630100405], [2460595.3717341926, 2460595.371957889], [2460595.373300066, 2460595.3734119143], [2460595.3759844205, 2460595.376431813], [2460595.3767673573, 2460595.3768792055], [2460595.3936564215, 2460595.3937682696], [2460595.393991966, 2460595.394103814], [2460595.3964526244, 2460595.3966763206], [2460595.398354042, 2460595.39846589], [2460595.4018213334, 2460595.4019331816], [2460595.402156878, 2460595.402268726], [2460595.402380574, 2460595.4026042703], [2460595.409203308, 2460595.4093151563], [2460595.41088103, 2460595.410992878], [2460595.411104726, 2460595.4114402705], [2460595.41736822, 2460595.4174800683], [2460595.4246383472, 2460595.4247501954], [2460595.4272108534, 2460595.4273227016], [2460595.438507512, 2460595.4386193603], [2460595.4405207783, 2460595.4406326264], [2460595.4492449304, 2460595.4494686266], [2460595.4495804748, 2460595.449692323], [2460595.449916019, 2460595.4502515635], [2460595.4503634116, 2460595.4504752597], [2460595.4522648295, 2460595.4523766777], [2460595.4553965763, 2460595.4555084244], [2460595.4630022477, 2460595.463225944], [2460595.463337792, 2460595.4635614883], [2460595.465574754, 2460595.465686602], [2460595.4671406276, 2460595.4672524757], [2460595.467476172, 2460595.4679235644], [2460595.4681472606, 2460595.4682591087], [2460595.4713908555, 2460595.4715027036], [2460595.4849244766, 2460595.4850363247], [2460595.487273287, 2460595.4878325276], [2460595.4883917677, 2460595.488503616], [2460595.5008069077, 2460595.500918756], [2460595.501925389, 2460595.502149085], [2460595.5042741993, 2460595.5044978955], [2460595.5114324777, 2460595.511544326], [2460595.51545901, 2460595.515570858], [2460595.5157945543, 2460595.5159064024], [2460595.518031516, 2460595.518143364], [2460595.5236239214, 2460595.5238476177], [2460595.5257490356, 2460595.52608458], [2460595.52843339, 2460595.528545238], [2460595.5319006816, 2460595.5320125297], [2460595.5380523275, 2460595.5381641756], [2460595.5392826563, 2460595.5393945044], [2460595.5423025554, 2460595.5424144035], [2460595.542973644, 2460595.543085492], [2460595.5431973403, 2460595.5433091884], [2460595.5434210366, 2460595.5435328847], [2460595.545322454, 2460595.545434302], [2460595.546440935, 2460595.5466646315], [2460595.550691163, 2460595.5509148594], [2460595.5519214924, 2460595.5520333406], [2460595.5530399736, 2460595.55326367], [2460595.55561248, 2460595.555836176], [2460595.5563954166, 2460595.556730961], [2460595.5601982526, 2460595.5603101007], [2460595.560645645, 2460595.5609811894], [2460595.5613167332, 2460595.5614285814], [2460595.5688105565, 2460595.569034253], [2460595.569146101, 2460595.5697053415], [2460595.5699290377, 2460595.570040886], [2460595.5739555694, 2460595.574402962], [2460595.574626658, 2460595.5748503543], [2460595.5784294936, 2460595.5785413417], [2460595.578765038, 2460595.578988734], [2460595.5791005823, 2460595.579659823], [2460595.5830152663, 2460595.583462659], [2460595.5835745065, 2460595.5836863546], [2460595.584133747, 2460595.5846929876], [2460595.5877128867, 2460595.587824735], [2460595.588048431, 2460595.588160279], [2460595.5883839754, 2460595.5886076717], [2460595.588831368, 2460595.5892787604], [2460595.5897261524, 2460595.5900616967], [2460595.592298659, 2460595.592410507], [2460595.5926342034, 2460595.5927460515], [2460595.5928578996, 2460595.5977792162], [2460595.598674001, 2460595.5988976974], [2460595.5992332418, 2460595.601805748], [2460595.6050493433, 2460595.6052730395], [2460595.606279672, 2460595.6063915202], [2460595.6068389127, 2460595.606950761], [2460595.6075100014, 2460595.6077336976], [2460595.6096351156, 2460595.609858812], [2460595.6105299005, 2460595.6106417486], [2460595.610977293, 2460595.6113128373], [2460595.613214255, 2460595.613437951], [2460595.6183592677, 2460595.618582964], [2460595.620708078, 2460595.6209317744], [2460595.6211554706, 2460595.621379167], [2460595.6235042806, 2460595.623839825], [2460595.625964939, 2460595.6260767872], [2460595.6283137496, 2460595.6284255977], [2460595.6294322303, 2460595.6295440784], [2460595.630998104, 2460595.631109952], [2460595.6317810407, 2460595.631892889], [2460595.633123218, 2460595.633235066], [2460595.6356957243, 2460595.6358075724], [2460595.6390511678, 2460595.63949856], [2460595.6438606363, 2460595.6440843325], [2460595.64542651, 2460595.645538358], [2460595.646097598, 2460595.6463212944], [2460595.648670105, 2460595.648781953], [2460595.651354459, 2460595.6515781553], [2460595.6518018516, 2460595.6519136997], [2460595.6544862064, 2460595.6545980545], [2460595.655157295, 2460595.655269143], [2460595.6609733966, 2460595.661197093], [2460595.6619800297, 2460595.662315574], [2460595.662874814, 2460595.663545903], [2460595.663769599, 2460595.6644406877], [2460595.6661184095, 2460595.666453954], [2460595.667460587, 2460595.6863629166]] freq_flags: [[46859741.2109375, 46981811.5234375], [49911499.0234375, 50033569.3359375], [54672241.2109375, 54794311.5234375], [62362670.8984375, 62728881.8359375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124618530.2734375, 125473022.4609375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136703491.2109375, 136825561.5234375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141098022.4609375, 142562866.2109375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198226928.7109375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [9, Jee], [15, Jnn], [16, Jee], [17, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [82, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [95, Jee], [96, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [109, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [127, Jee], [127, Jnn], [130, Jee], [130, Jnn], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [144, Jee], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [191, Jee], [193, Jee], [194, Jee], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [205, Jnn], [206, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [218, Jnn], [232, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 629.25 minutes.