Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1793 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460600/zen.2460600.25246.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1793 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460600/zen.2460600.25246.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
52.640% of waterfall flagged to start. 53.376% of waterfall flagged after flagging z > 5.0 outliers.
53.520% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 4 channels. Flagging 5 channels previously flagged 25.00% or more. Flagging 154 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 2 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 56.709% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1793 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460600/zen.2460600.25246.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460600/2460600_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460600.252346743, 2460600.3156527714], [2460600.3157646195, 2460600.3228110503], [2460600.3229228985, 2460600.323258443], [2460600.323370291, 2460600.3260546452], [2460600.3263901896, 2460600.327732367], [2460600.327844215, 2460600.332989228], [2460600.333101076, 2460600.3333247723], [2460600.333772165, 2460600.333995861], [2460600.3344432535, 2460600.3345551016], [2460600.334890646, 2460600.335002494], [2460600.335114342, 2460600.3370157597], [2460600.337127608, 2460600.337351304], [2460600.3376868484, 2460600.3379105446], [2460600.338134241, 2460600.338246089], [2460600.338357937, 2460600.338469785], [2460600.3388053295, 2460600.3390290258], [2460600.339476418, 2460600.3395882663], [2460600.3398119626, 2460600.3399238107], [2460600.340147507, 2460600.3409304437], [2460600.341042292, 2460600.34115414], [2460600.341265988, 2460600.3419370763], [2460600.3422726206, 2460600.3423844688], [2460600.342720013, 2460600.3430555575], [2460600.343726646, 2460600.3438384943], [2460600.3439503424, 2460600.3440621905], [2460600.344397735, 2460600.344509583], [2460600.3449569754, 2460600.3450688235], [2460600.3451806717, 2460600.3461873047], [2460600.346411001, 2460600.3467465453], [2460600.3469702415, 2460600.3470820896], [2460600.3474176335, 2460600.3475294816], [2460600.3476413297, 2460600.347865026], [2460600.347976874, 2460600.3483124184], [2460600.348871659, 2460600.3492072034], [2460600.3494308996, 2460600.3495427477], [2460600.349766444, 2460600.349878292], [2460600.34999014, 2460600.3501019883], [2460600.3505493808, 2460600.350884925], [2460600.350996773, 2460600.351556014], [2460600.35177971, 2460600.351891558], [2460600.3521152544, 2460600.3522271025], [2460600.352562647, 2460600.352674495], [2460600.353121887, 2460600.3537929757], [2460600.354016672, 2460600.354240368], [2460600.3546877606, 2460600.355023305], [2460600.355135153, 2460600.355247001], [2460600.3555825455, 2460600.3556943936], [2460600.3564773304, 2460600.3567010267], [2460600.3572602673, 2460600.357931356], [2460600.358490596, 2460600.358602444], [2460600.3587142923, 2460600.3588261404], [2460600.3591616848, 2460600.359273533], [2460600.359385381, 2460600.3597209253], [2460600.3600564697, 2460600.360168318], [2460600.360392014, 2460600.3606157103], [2460600.3610631027, 2460600.361286799], [2460600.361398647, 2460600.361510495], [2460600.362181584, 2460600.362293432], [2460600.36240528, 2460600.3627408245], [2460600.363188217, 2460600.363300065], [2460600.363411913, 2460600.3635237613], [2460600.3639711537, 2460600.364530394], [2460600.36475409, 2460600.364865938], [2460600.3649777863, 2460600.3650896344], [2460600.365760723, 2460600.3658725712], [2460600.366431812, 2460600.3671029005], [2460600.367438445, 2460600.367550293], [2460600.3679976854, 2460600.3682213817], [2460600.3691161666, 2460600.369339863], [2460600.370010951, 2460600.3702346473], [2460600.3705701916, 2460600.3706820398], [2460600.371129432, 2460600.3712412803], [2460600.3713531285, 2460600.3714649766], [2460600.371800521, 2460600.371912369], [2460600.372024217, 2460600.3721360653], [2460600.3724716096, 2460600.372695306], [2460600.372919002, 2460600.37303085], [2460600.3740374832, 2460600.3741493314], [2460600.3742611795, 2460600.3743730276], [2460600.374932268, 2460600.3750441163], [2460600.3756033564, 2460600.3758270526], [2460600.3759389007, 2460600.376050749], [2460600.376274445, 2460600.376386293], [2460600.3766099894, 2460600.3768336857], [2460600.376945534, 2460600.37716923], [2460600.377281078, 2460600.3775047744], [2460600.3776166225, 2460600.3777284706], [2460600.3789588, 2460600.380860218], [2460600.3809720655, 2460600.3810839136], [2460600.381643154, 2460600.3817550023], [2460600.383320876, 2460600.383544572], [2460600.3837682684, 2460600.3839919646], [2460600.3841038127, 2460600.3901436105], [2460600.391709484, 2460600.39372275], [2460600.393946446, 2460600.3941701422], [2460600.3946175347, 2460600.394841231], [2460600.3951767753, 2460600.3952886234], [2460600.395959712, 2460600.3961834083], [2460600.3962952564, 2460600.3979729777], [2460600.398308522, 2460600.3986440664], [2460600.3998743957, 2460600.400098092], [2460600.40020994, 2460600.400992877], [2460600.4017758137, 2460600.401887662], [2460600.4025587505, 2460600.4026705986], [2460600.4027824467, 2460600.4033416873], [2460600.4034535354, 2460600.4035653835], [2460600.403677231, 2460600.4037890793], [2460600.404460168, 2460600.407591915], [2460600.409940725, 2460600.4101644214], [2460600.4109473582, 2460600.4113947507], [2460600.411730295, 2460600.411842143], [2460600.4147501937, 2460600.41497389], [2460600.4155331305, 2460600.4156449786], [2460600.415868675, 2460600.416875308], [2460600.4183293334, 2460600.419000422], [2460600.41911227, 2460600.4193359665], [2460600.4194478146, 2460600.4195596627], [2460600.419783359, 2460600.419895207], [2460600.420007055, 2460600.4201189033], [2460600.420454447, 2460600.4205662953], [2460600.4239217388, 2460600.424033587], [2460600.4260468525, 2460600.4261587006], [2460600.4262705487, 2460600.426382397], [2460600.4268297893, 2460600.4269416374], [2460600.428619359, 2460600.4287312073], [2460600.4288430554, 2460600.4289549035], [2460600.4291785997, 2460600.429290448], [2460600.429402296, 2460600.430408929], [2460600.431974802, 2460600.432981435], [2460600.4333169796, 2460600.4334288277], [2460600.4352183975, 2460600.4353302456], [2460600.4370079674, 2460600.4372316636], [2460600.4383501443, 2460600.4385738405], [2460600.4395804736, 2460600.43980417], [2460600.4406989547, 2460600.440810803], [2460600.443271461, 2460600.443383309], [2460600.443495157, 2460600.4437188534], [2460600.4448373346, 2460600.445284727], [2460600.44629136, 2460600.4465150563], [2460600.4466269044, 2460600.4467387525], [2460600.446962449, 2460600.4478572337], [2460600.448528322, 2460600.448752018], [2460600.4498704993, 2460600.4499823474], [2460600.4521074616, 2460600.4522193098], [2460600.4527785503, 2460600.4530022466], [2460600.4536733353, 2460600.4537851834], [2460600.4541207273, 2460600.4542325754], [2460600.455798449, 2460600.4562458415], [2460600.4564695377, 2460600.4573643226], [2460600.459713133, 2460600.459824981], [2460600.459936829, 2460600.460943462], [2460600.461167158, 2460600.461279006], [2460600.4623974874, 2460600.4625093355], [2460600.464075209, 2460600.4656410823], [2460600.4657529304, 2460600.4660884747], [2460600.4676543484, 2460600.4677661965], [2460600.468213589, 2460600.468325437], [2460600.469220222, 2460600.46933207], [2460600.469443918, 2460600.4697794626], [2460600.4698913107, 2460600.470003159], [2460600.470115007, 2460600.470226855], [2460600.470338703, 2460600.4705623994], [2460600.4712334876, 2460600.4713453357], [2460600.473694146, 2460600.4740296905], [2460600.474588931, 2460600.474700779], [2460600.477049589, 2460600.4771614373], [2460600.4776088297, 2460600.4795102477], [2460600.4811879694, 2460600.481635362], [2460600.4825301464, 2460600.4828656907], [2460600.4834249313, 2460600.4835367794], [2460600.483984172, 2460600.48409602], [2460600.484207868, 2460600.484319716], [2460600.485102653, 2460600.4853263493], [2460600.4854381974, 2460600.4855500455], [2460600.4856618936, 2460600.4857737417], [2460600.486109286, 2460600.4863329823], [2460600.4874514635, 2460600.4875633116], [2460600.4887936404, 2460600.4889054885], [2460600.489576577, 2460600.4896884253], [2460600.495504527, 2460600.4959519194], [2460600.497405945, 2460600.49830073], [2460600.5003139954, 2460600.5004258435], [2460600.504564224, 2460600.504676072], [2460600.5054590083, 2460600.5055708564], [2460600.5057945526, 2460600.506130097], [2460600.506913034, 2460600.507024882], [2460600.51127511, 2460600.511386958], [2460600.511498806, 2460600.512393591], [2460600.5136239203, 2460600.5137357684], [2460600.5139594646, 2460600.514295009], [2460600.5156371864, 2460600.5158608826], [2460600.5159727307, 2460600.516755667], [2460600.5169793633, 2460600.5170912114], [2460600.5177623, 2460600.517874148], [2460600.5191044775, 2460600.5192163256], [2460600.51955187, 2460600.519663718], [2460600.5202229586, 2460600.520446655], [2460600.520558503, 2460600.520670351], [2460600.520782199, 2460600.5210058955], [2460600.522124376, 2460600.5223480724], [2460600.5234665535, 2460600.5243613385], [2460600.5244731866, 2460600.524920579], [2460600.525032427, 2460600.5262627564], [2460600.5271575414, 2460600.5274930852], [2460600.5276049334, 2460600.5277167815], [2460600.5284997183, 2460600.5295063513], [2460600.5296181994, 2460600.5297300476], [2460600.529953744, 2460600.530289288], [2460600.531184073, 2460600.532078858], [2460600.5327499467, 2460600.532861795], [2460600.534427668, 2460600.534539516], [2460600.5349869085, 2460600.535210605], [2460600.5357698454, 2460600.5358816935], [2460600.538789744, 2460600.5391252884], [2460600.5392371365, 2460600.5393489846], [2460600.5404674658, 2460600.540691162], [2460600.5420333394, 2460600.5421451875], [2460600.542704428, 2460600.5429281243], [2460600.5447176937, 2460600.54494139], [2460600.547961289, 2460600.5515404283], [2460600.5518759727, 2460600.551987821], [2460600.5528826057, 2460600.552994454], [2460600.553106302, 2460600.5535536944], [2460600.5537773906, 2460600.5538892387], [2460600.554001087, 2460600.554224783], [2460600.5544484793, 2460600.5545603274], [2460600.556685441, 2460600.5567972893], [2460600.5579157704, 2460600.5580276186], [2460600.558251315, 2460600.558363163], [2460600.5613830616, 2460600.5614949097], [2460600.5644029607, 2460600.564738505], [2460600.5649622013, 2460600.5651858975], [2460600.5676465556, 2460600.567870252], [2460600.571001999, 2460600.571113847], [2460600.573462657, 2460600.5736863534], [2460600.5737982015, 2460600.5740218977], [2460600.574133746, 2460600.5748048346], [2460600.5764825563, 2460600.5776010375], [2460600.582298658, 2460600.582410506], [2460600.5855422528, 2460600.585765949], [2460600.585877797, 2460600.585989645], [2460600.5873318226, 2460600.5874436707], [2460600.587667367, 2460600.587891063], [2460600.5894569363, 2460600.5896806326], [2460600.589904329, 2460600.590016177], [2460600.5916938987, 2460600.591805747], [2460600.5927005317, 2460600.5932597723], [2460600.5933716204, 2460600.5937071647], [2460600.593819013, 2460600.5942664053], [2460600.5977336965, 2460600.5978455446], [2460600.5987403295, 2460600.5988521776], [2460600.5997469625, 2460600.5998588107], [2460600.6019839244, 2460600.6022076206], [2460600.602431317, 2460600.602655013], [2460600.6028787093, 2460600.6041090386], [2460600.605674912, 2460600.6083592665], [2460600.608918507, 2460600.6091422033], [2460600.609701444, 2460600.609813292], [2460600.6100369883, 2460600.6101488364], [2460600.6102606845, 2460600.610819925], [2460600.612162102, 2460600.6123857982], [2460600.6133924313, 2460600.6135042794], [2460600.615964938, 2460600.616076786], [2460600.6206625584, 2460600.6207744065], [2460600.6216691914, 2460600.6217810395], [2460600.6231232164, 2460600.6233469127], [2460600.6243535457, 2460600.624465394], [2460600.625807571, 2460600.6260312675], [2460600.626702356, 2460600.6271497486], [2460600.627708989, 2460600.6281563817], [2460600.6306170397, 2460600.6320710653], [2460600.632742154, 2460600.63296585], [2460600.633636939, 2460600.6346435715], [2460600.6348672677, 2460600.63531466], [2460600.6355383564, 2460600.6356502045], [2460600.6367686857, 2460600.636992382], [2460600.637216078, 2460600.6375516225], [2460600.639788585, 2460600.639900433], [2460600.642472939, 2460600.642584787], [2460600.6438151165, 2460600.6439269646], [2460600.6449335977, 2460600.645157294], [2460600.646835015, 2460600.6470587114], [2460600.647841648, 2460600.6479534963], [2460600.6481771925, 2460600.6482890407], [2460600.6514207874, 2460600.651756332], [2460600.6524274205, 2460600.6526511167], [2460600.6545525347, 2460600.654776231], [2460600.6553354715, 2460600.6555591677], [2460600.6561184083, 2460600.6564539527], [2460600.657236889, 2460600.6577961296], [2460600.658019826, 2460600.659921244]] freq_flags: [[47592163.0859375, 48080444.3359375], [49911499.0234375, 50155639.6484375], [54428100.5859375, 54794311.5234375], [62240600.5859375, 63217163.0859375], [69931030.2734375, 70053100.5859375], [81771850.5859375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112533569.3359375, 112655639.6484375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124618530.2734375, 125595092.7734375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [134017944.3359375, 134140014.6484375], [134262084.9609375, 134506225.5859375], [136215209.9609375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [139999389.6484375, 140853881.8359375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143173217.7734375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153793334.9609375, 153915405.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [157577514.6484375, 157699584.9609375], [158187866.2109375, 158309936.5234375], [159164428.7109375, 159286499.0234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [192367553.7109375, 192489624.0234375], [193222045.8984375, 193344116.2109375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [223129272.4609375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [9, Jee], [15, Jnn], [17, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jee], [37, Jnn], [38, Jee], [38, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [66, Jee], [66, Jnn], [69, Jee], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [91, Jee], [91, Jnn], [92, Jee], [93, Jee], [96, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [102, Jnn], [104, Jnn], [105, Jee], [105, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jnn], [116, Jee], [116, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [125, Jee], [125, Jnn], [126, Jee], [130, Jee], [130, Jnn], [131, Jee], [132, Jee], [132, Jnn], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [148, Jee], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [194, Jee], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [207, Jee], [207, Jnn], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [226, Jnn], [231, Jee], [232, Jee], [234, Jnn], [240, Jee], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [269, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 124.42 minutes.