Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1837 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460603/zen.2460603.25252.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1837 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460603/zen.2460603.25252.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
29.833% of waterfall flagged to start. 31.297% of waterfall flagged after flagging z > 5.0 outliers.
31.689% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 7 channels. Flagging 9 channels previously flagged 25.00% or more. Flagging 296 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 37.988% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1837 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460603/zen.2460603.25252.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460603/2460603_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460603.2527398462, 2460603.2528516944], [2460603.2529635425, 2460603.2531872387], [2460603.253299087, 2460603.254417568], [2460603.2547531123, 2460603.2550886567], [2460603.255536049, 2460603.2557597454], [2460603.2563189855, 2460603.2565426817], [2460603.2575493148, 2460603.257884859], [2460603.258891492, 2460603.2591151884], [2460603.259562581, 2460603.260457366], [2460603.260569214, 2460603.260681062], [2460603.262246935, 2460603.2626943276], [2460603.2628061757, 2460603.2635891126], [2460603.2645957456, 2460603.265043138], [2460603.266161619, 2460603.2666090117], [2460603.26672086, 2460603.2672801], [2460603.269293366, 2460603.269517062], [2460603.27141848, 2460603.2716421764], [2460603.274550227, 2460603.274773923], [2460603.277570126, 2460603.277681974], [2460603.2801426323, 2460603.2802544804], [2460603.280813721, 2460603.2811492654], [2460603.2833862277, 2460603.288978633], [2460603.289090481, 2460603.2892023292], [2460603.2894260255, 2460603.2897615694], [2460603.2899852656, 2460603.290208962], [2460603.29032081, 2460603.2906563543], [2460603.2907682024, 2460603.29859757], [2460603.298709418, 2460603.3025122536], [2460603.302847798, 2460603.302959646], [2460603.3034070386, 2460603.3043018235], [2460603.3045255197, 2460603.304749216], [2460603.304861064, 2460603.304972912], [2460603.3063150896, 2460603.307098026], [2460603.307209874, 2460603.307321722], [2460603.3076572665, 2460603.309894229], [2460603.310006077, 2460603.3103416213], [2460603.3104534694, 2460603.3105653175], [2460603.31101271, 2460603.3116837987], [2460603.311907495, 2460603.312019343], [2460603.312354887, 2460603.312466735], [2460603.3128022794, 2460603.3130259756], [2460603.313249672, 2460603.313473368], [2460603.3140326086, 2460603.3141444568], [2460603.314480001, 2460603.3149273936], [2460603.315486634, 2460603.3160458747], [2460603.317052508, 2460603.317388052], [2460603.317835444, 2460603.3183946847], [2460603.3191776215, 2460603.3192894696], [2460603.3199605583, 2460603.3200724064], [2460603.320519799, 2460603.3208553432], [2460603.3211908876, 2460603.321414584], [2460603.321526432, 2460603.32163828], [2460603.3221975206, 2460603.3223093688], [2460603.328908407, 2460603.329243951], [2460603.3314809133, 2460603.3318164577], [2460603.3348363563, 2460603.335283749], [2460603.3360666856, 2460603.336290382], [2460603.3376325592, 2460603.3378562555], [2460603.3381918, 2460603.338303648], [2460603.3409880023, 2460603.3410998504], [2460603.345461927, 2460603.345685623], [2460603.345909319, 2460603.346133015], [2460603.3462448632, 2460603.3464685595], [2460603.3466922557, 2460603.3470278], [2460603.350830636, 2460603.350942484], [2460603.3537386865, 2460603.3538505347], [2460603.355080864, 2460603.35530456], [2460603.3555282564, 2460603.3556401045], [2460603.356311193, 2460603.3564230413], [2460603.3566467375, 2460603.3567585857], [2460603.357541522, 2460603.3577652182], [2460603.3582126107, 2460603.358436307], [2460603.360337725, 2460603.360449573], [2460603.3606732693, 2460603.3607851174], [2460603.3611206617, 2460603.361344358], [2460603.361456206, 2460603.3616799023], [2460603.3617917504, 2460603.3619035985], [2460603.362239143, 2460603.3627983835], [2460603.362910231, 2460603.3633576236], [2460603.3634694717, 2460603.36358132], [2460603.363805016, 2460603.3641405604], [2460603.3642524085, 2460603.3651471934], [2460603.3659301302, 2460603.3660419784], [2460603.366489371, 2460603.366713067], [2460603.3693974214, 2460603.369844814], [2460603.3702922063, 2460603.3706277506], [2460603.37185808, 2460603.3721936243], [2460603.372752865, 2460603.372976561], [2460603.373871346, 2460603.373983194], [2460603.376220156, 2460603.376332004], [2460603.3767793966, 2460603.377114941], [2460603.378121574, 2460603.3786808145], [2460603.3789045108, 2460603.379128207], [2460603.379240055, 2460603.379351903], [2460603.379687447, 2460603.379799295], [2460603.380470384, 2460603.3808059283], [2460603.381700713, 2460603.3819244094], [2460603.3841613717, 2460603.384496916], [2460603.3849443085, 2460603.3850561567], [2460603.385950941, 2460603.3861746374], [2460603.38662203, 2460603.386845726], [2460603.3914314983, 2460603.3915433465], [2460603.3942277012, 2460603.3944513975], [2460603.3945632456, 2460603.39489879], [2460603.402616309, 2460603.402728157], [2460603.4028400052, 2460603.4029518533], [2460603.4040703345, 2460603.4041821826], [2460603.4051888157, 2460603.405412512], [2460603.4069783855, 2460603.4070902336], [2460603.40731393, 2460603.407537626], [2460603.4077613223, 2460603.407985018], [2460603.410893069, 2460603.411004917], [2460603.4113404616, 2460603.411676006], [2460603.4123470946, 2460603.412570791], [2460603.414919601, 2460603.415031449], [2460603.416261778, 2460603.4164854744], [2460603.423196361, 2460603.423420057], [2460603.4239792977, 2460603.424091146], [2460603.425433323, 2460603.425768867], [2460603.4258807153, 2460603.4259925634], [2460603.427446589, 2460603.427670285], [2460603.4305783357, 2460603.430690184], [2460603.431025728, 2460603.4311375762], [2460603.4322560574, 2460603.4324797536], [2460603.4377366146, 2460603.4378484627], [2460603.4387432477, 2460603.4388550958], [2460603.439973577, 2460603.440197273], [2460603.4403091213, 2460603.4404209694], [2460603.4447830454, 2460603.4448948936], [2460603.4509346914, 2460603.4510465395], [2460603.4511583876, 2460603.4512702357], [2460603.452612413, 2460603.4528361093], [2460603.4532835013, 2460603.4535071976], [2460603.4556323118, 2460603.45574416], [2460603.4563034005, 2460603.4564152486], [2460603.4570863373, 2460603.4573100335], [2460603.4605536284, 2460603.4606654765], [2460603.462007654, 2460603.462119502], [2460603.4651394007, 2460603.465363097], [2460603.4677119073, 2460603.4678237555], [2460603.4686066923, 2460603.4688303885], [2460603.469948869, 2460603.4701725654], [2460603.470731806, 2460603.470843654], [2460603.4733043127, 2460603.473416161], [2460603.4756531226, 2460603.475876819], [2460603.476883452, 2460603.4769953], [2460603.4772189963, 2460603.4773308444], [2460603.4791204142, 2460603.4793441105], [2460603.4810218317, 2460603.48113368], [2460603.4816929204, 2460603.4818047686], [2460603.4824758573, 2460603.4825877054], [2460603.4839298828, 2460603.484041731], [2460603.4848246677, 2460603.485048364], [2460603.490305225, 2460603.490528921], [2460603.499924162, 2460603.50003601], [2460603.500147858, 2460603.5003715544], [2460603.5012663393, 2460603.5016018837], [2460603.501713732, 2460603.501937428], [2460603.503503301, 2460603.5039506936], [2460603.5048454786, 2460603.505181023], [2460603.5076416815, 2460603.507977226], [2460603.508200922, 2460603.50831277], [2460603.510549732, 2460603.5107734283], [2460603.511668213, 2460603.5117800613], [2460603.5121156056, 2460603.5122274538], [2460603.5182672516, 2460603.518602796], [2460603.5192738846, 2460603.519833125], [2460603.5216226946, 2460603.5217345427], [2460603.522853024, 2460603.522964872], [2460603.5236359606, 2460603.5237478088], [2460603.5243070493, 2460603.5244188975], [2460603.524978138, 2460603.5252018343], [2460603.5253136824, 2460603.5256492267], [2460603.5268795555, 2460603.527103252], [2460603.528333581, 2460603.5285572773], [2460603.529228366, 2460603.529452062], [2460603.530346847, 2460603.5304586953], [2460603.5306823915, 2460603.5316890245], [2460603.534597075, 2460603.53549186], [2460603.5359392525, 2460603.5360511006], [2460603.536386645, 2460603.536498493], [2460603.5367221893, 2460603.5370577336], [2460603.5371695817, 2460603.53728143], [2460603.5373932775, 2460603.5375051256], [2460603.53784067, 2460603.537952518], [2460603.5382880624, 2460603.5383999106], [2460603.5385117587, 2460603.539742088], [2460603.5400776323, 2460603.5401894804], [2460603.5404131766, 2460603.5405250248], [2460603.540636873, 2460603.540748721], [2460603.5413079616, 2460603.5414198097], [2460603.542650139, 2460603.542761987], [2460603.542873835, 2460603.543097531], [2460603.543209379, 2460603.544887101], [2460603.5457818857, 2460603.545893734], [2460603.546005582, 2460603.54611743], [2460603.5464529744, 2460603.5465648226], [2460603.5466766707, 2460603.5489136325], [2460603.5491373288, 2460603.549361025], [2460603.5500321137, 2460603.550143962], [2460603.550367658, 2460603.5510387467], [2460603.551150595, 2460603.551262443], [2460603.551374291, 2460603.5519335316], [2460603.5520453798, 2460603.552492772], [2460603.5529401647, 2460603.553052013], [2460603.553275709, 2460603.553387557], [2460603.554841582, 2460603.5550652784], [2460603.555400823, 2460603.555624519], [2460603.556407456, 2460603.556519304], [2460603.5570785445, 2460603.5571903926], [2460603.5589799625, 2460603.5590918106], [2460603.559651051, 2460603.5597628993], [2460603.560769532, 2460603.561105076], [2460603.561664317, 2460603.561888013], [2460603.561999861, 2460603.5621117093], [2460603.563565735, 2460603.563789431], [2460603.5644605197, 2460603.564572368], [2460603.566361937, 2460603.5664737853], [2460603.5666974816, 2460603.567033026], [2460603.5685988995, 2460603.5687107476], [2460603.5688225958, 2460603.569046292], [2460603.5707240137, 2460603.570835862], [2460603.5737439124, 2460603.5738557605], [2460603.574303153, 2460603.574415001], [2460603.575197938, 2460603.575309786], [2460603.5756453304, 2460603.5757571785], [2460603.5769875073, 2460603.5770993554], [2460603.5781059884, 2460603.5783296847], [2460603.578777077, 2460603.5788889253], [2460603.581461432, 2460603.581685128], [2460603.5821325206, 2460603.5822443687], [2460603.5823562164, 2460603.5824680645], [2460603.583027305, 2460603.5832510013], [2460603.5833628494, 2460603.5835865457], [2460603.584033938, 2460603.5842576344], [2460603.5853761155, 2460603.5855998117], [2460603.586047204, 2460603.5862709004], [2460603.591863306, 2460603.59219885], [2460603.5923106982, 2460603.5924225464], [2460603.5956661412, 2460603.5958898375], [2460603.5977912555, 2460603.5980149517], [2460603.598350496, 2460603.598462344], [2460603.5986860404, 2460603.5990215847], [2460603.5994689767, 2460603.599692673], [2460603.601705939, 2460603.6021533315], [2460603.6023770277, 2460603.602488876], [2460603.602600724, 2460603.602712572], [2460603.6040547495, 2460603.6041665976], [2460603.605061382, 2460603.6055087745], [2460603.605844319, 2460603.606179863], [2460603.6062917113, 2460603.6065154076], [2460603.607745737, 2460603.607857585], [2460603.6081931293, 2460603.6085286736], [2460603.6095353067, 2460603.609759003], [2460603.6105419393, 2460603.6106537874], [2460603.6107656355, 2460603.6109893317], [2460603.611995965, 2460603.612107813], [2460603.6126670535, 2460603.6128907497], [2460603.613002598, 2460603.613338142], [2460603.6135618384, 2460603.6136736865], [2460603.6162461927, 2460603.616358041], [2460603.617476522, 2460603.61758837], [2460603.6179239145, 2460603.6180357626], [2460603.620496421, 2460603.6207201174], [2460603.6208319655, 2460603.6210556617], [2460603.62172675, 2460603.621838598], [2460603.62351632, 2460603.623628168], [2460603.6259769783, 2460603.6263125227], [2460603.626648067, 2460603.6268717633], [2460603.629108725, 2460603.6293324213], [2460603.6304509025, 2460603.6305627506], [2460603.6322404724, 2460603.6323523205], [2460603.6324641686, 2460603.632687865], [2460603.6355959154, 2460603.6357077635], [2460603.6407409282, 2460603.6408527764], [2460603.643313435, 2460603.6436489793], [2460603.6455503968, 2460603.645774093], [2460603.646892574, 2460603.6470044223], [2460603.6482347515, 2460603.6483465997], [2460603.6489058402, 2460603.6492413846], [2460603.6544982456, 2460603.6546100937], [2460603.6551693343, 2460603.6557285744], [2460603.6568470555, 2460603.6569589037], [2460603.657070752, 2460603.6571826], [2460603.6578536886, 2460603.658077385], [2460603.6585247773, 2460603.6586366254], [2460603.6589721697, 2460603.659084018], [2460603.6605380434, 2460603.6606498915], [2460603.6607617396, 2460603.6649001194]] freq_flags: [[46859741.2109375, 46981811.5234375], [47714233.3984375, 47958374.0234375], [49911499.0234375, 50155639.6484375], [54183959.9609375, 54794311.5234375], [62240600.5859375, 62973022.4609375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124496459.9609375, 125473022.4609375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136947631.8359375, 138046264.6484375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143295288.0859375], [143783569.3359375, 144027709.9609375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149887084.9609375, 150009155.2734375], [153671264.6484375, 153793334.9609375], [154159545.8984375, 154403686.5234375], [157577514.6484375, 157699584.9609375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171371459.9609375], [171737670.8984375, 171859741.2109375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [199935913.0859375, 200057983.3984375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220687866.2109375, 220809936.5234375], [222885131.8359375, 223617553.7109375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231430053.7109375], [233139038.0859375, 233261108.3984375], [234237670.8984375, 234359741.2109375]] ex_ants: [[8, Jee], [9, Jee], [15, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [57, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [87, Jnn], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [96, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jee], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jee], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [122, Jnn], [125, Jee], [125, Jnn], [130, Jee], [130, Jnn], [131, Jee], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [142, Jnn], [144, Jee], [144, Jnn], [148, Jee], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [205, Jnn], [206, Jee], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [231, Jee], [232, Jee], [234, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [266, Jee], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 46.99 minutes.