Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460609/zen.2460609.25242.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460609/zen.2460609.25242.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
16.241% of waterfall flagged to start. 23.185% of waterfall flagged after flagging z > 5.0 outliers.
24.217% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 23 channels. Flagging 140 channels previously flagged 25.00% or more. Flagging 410 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 14 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 37.573% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460609/zen.2460609.25242.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460609/2460609_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460609.252311809, 2460609.252423657], [2460609.252647353, 2460609.252871049], [2460609.2530947453, 2460609.2534302897], [2460609.253653986, 2460609.2542132265], [2460609.254884315, 2460609.2551080114], [2460609.255667252, 2460609.2557791], [2460609.2560027963, 2460609.2562264926], [2460609.2579042143, 2460609.2581279106], [2460609.2583516063, 2460609.2585753025], [2460609.2592463912, 2460609.2593582394], [2460609.2603648724, 2460609.2604767205], [2460609.2605885686, 2460609.260924113], [2460609.2612596573, 2460609.2614833536], [2460609.261930746, 2460609.262042594], [2460609.263049227, 2460609.2632729234], [2460609.2646151003, 2460609.2647269485], [2460609.265062493, 2460609.265174341], [2460609.266180974, 2460609.266292822], [2460609.2674113032, 2460609.2677468476], [2460609.2678586957, 2460609.26819424], [2460609.268306088, 2460609.2684179363], [2460609.2687534806, 2460609.269089025], [2460609.269312721, 2460609.2694245693], [2460609.269536417, 2460609.269648265], [2460609.269760113, 2460609.275576215], [2460609.2764709997, 2460609.2835174305], [2460609.283741127, 2460609.284076671], [2460609.2843003673, 2460609.2844122155], [2460609.2845240636, 2460609.2856425447], [2460609.285754393, 2460609.285978089], [2460609.286089937, 2460609.2862017853], [2460609.286425481, 2460609.2866491773], [2460609.2867610254, 2460609.2868728735], [2460609.287208418, 2460609.287432114], [2460609.2879913547, 2460609.288215051], [2460609.2885505953, 2460609.2887742915], [2460609.289333532, 2460609.28944538], [2460609.2895572283, 2460609.2896690764], [2460609.2897809246, 2460609.2904520133], [2460609.2905638614, 2460609.291123102], [2460609.291346798, 2460609.2917941906], [2460609.2920178864, 2460609.2922415826], [2460609.2923534308, 2460609.292465279], [2460609.2929126713, 2460609.293360064], [2460609.293695608, 2460609.2938074563], [2460609.2940311525, 2460609.2941430006], [2460609.2942548487, 2460609.294590393], [2460609.2948140893, 2460609.2949259374], [2460609.2950377855, 2460609.295261482], [2460609.295597026, 2460609.2957088742], [2460609.2958207224, 2460609.2960444186], [2460609.296379963, 2460609.2967155073], [2460609.2970510516, 2460609.2971628997], [2460609.297274748, 2460609.297498444], [2460609.29772214, 2460609.297833988], [2460609.2982813804, 2460609.2983932286], [2460609.3000709503, 2460609.3002946465], [2460609.3010775833, 2460609.3011894315], [2460609.302643457, 2460609.302867153], [2460609.3032026975, 2460609.3037619377], [2460609.3046567226, 2460609.304992267], [2460609.305215963, 2460609.3053278113], [2460609.3054396594, 2460609.3057752037], [2460609.30778847, 2460609.307900318], [2460609.308795103, 2460609.308906951], [2460609.3232235084, 2460609.3233353565], [2460609.323559053, 2460609.323782749], [2460609.3242301415, 2460609.3243419896], [2460609.3274737364, 2460609.3275855845], [2460609.3276974326, 2460609.3278092807], [2460609.3293751543, 2460609.3294870025], [2460609.329822547, 2460609.329934395], [2460609.3372045215, 2460609.3373163696], [2460609.351185535, 2460609.351297383], [2460609.3590149027, 2460609.359238599], [2460609.3631532826, 2460609.363488827], [2460609.3638243712, 2460609.3639362194], [2460609.364383612, 2460609.364719156], [2460609.3652783963, 2460609.3653902444], [2460609.3657257888, 2460609.365837637], [2460609.3663968774, 2460609.3665087256], [2460609.36684427, 2460609.366956118], [2460609.369081232, 2460609.3695286247], [2460609.3735551564, 2460609.3736670045], [2460609.3912271573, 2460609.3914508536], [2460609.393464119, 2460609.3935759673], [2460609.39637217, 2460609.3964840183], [2460609.397043259, 2460609.397938044], [2460609.398273588, 2460609.3986091325], [2460609.402523816, 2460609.402635664], [2460609.4038659935, 2460609.4040896897], [2460609.4154981966, 2460609.4156100447], [2460609.4242223487, 2460609.424334197], [2460609.4269067035, 2460609.4270185516], [2460609.434288678, 2460609.4344005263], [2460609.445697185, 2460609.4458090332], [2460609.4557635146, 2460609.4558753627], [2460609.466277237, 2460609.466389085], [2460609.4669483253, 2460609.4670601734], [2460609.4779094397, 2460609.478244984], [2460609.478356832, 2460609.4784686803], [2460609.4805937945, 2460609.481153035], [2460609.4899890353, 2460609.4901008834], [2460609.4911075165, 2460609.4912193646], [2460609.502180479, 2460609.5024041752], [2460609.5037463526, 2460609.5038582007], [2460609.516385189, 2460609.516497037], [2460609.525221189, 2460609.525333037], [2460609.5258922777, 2460609.526227822], [2460609.5274581513, 2460609.5277936957], [2460609.528017392, 2460609.528464784], [2460609.5299188094, 2460609.5300306575], [2460609.531596531, 2460609.5318202274], [2460609.535734911, 2460609.535846759], [2460609.5361823034, 2460609.5362941516], [2460609.5364059997, 2460609.536629696], [2460609.5384192658, 2460609.538866658], [2460609.5413273163, 2460609.5414391644], [2460609.5475908103, 2460609.5478145066], [2460609.548150051, 2460609.548373747], [2460609.549156684, 2460609.5496040764], [2460609.5504988614, 2460609.5507225576], [2460609.5509462534, 2460609.551617342], [2460609.5528476713, 2460609.5529595194], [2460609.5537424562, 2460609.5538543044], [2460609.5549727855, 2460609.5550846336], [2460609.5612362796, 2460609.5613481277], [2460609.5680590137, 2460609.568170862], [2460609.5705196722, 2460609.5706315204], [2460609.5742106596, 2460609.5743225077], [2460609.5761120776, 2460609.5762239257], [2460609.577342407, 2460609.577454255], [2460609.5795793687, 2460609.579691217], [2460609.586961344, 2460609.58718504], [2460609.59132342, 2460609.591435268], [2460609.5916589643, 2460609.5917708124], [2460609.5918826605, 2460609.5919945086], [2460609.592330053, 2460609.592441901], [2460609.5940077747, 2460609.594119623], [2460609.5947907115, 2460609.5949025596], [2460609.5950144078, 2460609.595238104], [2460609.5973632177, 2460609.597475066], [2460609.598481699, 2460609.598593547], [2460609.598705395, 2460609.599376484], [2460609.599488332, 2460609.59960018], [2460609.599712028, 2460609.5998238763], [2460609.6009423574, 2460609.6010542056], [2460609.601725294, 2460609.601837142], [2460609.6021726863, 2460609.6023963825], [2460609.6025082306, 2460609.6026200787], [2460609.6041859523, 2460609.6042978005], [2460609.6064229147, 2460609.606534763], [2460609.6104494464, 2460609.6105612945], [2460609.6106731426, 2460609.6107849907], [2460609.611120535, 2460609.6116797756], [2460609.6124627125, 2460609.6125745606], [2460609.613469345, 2460609.613581193], [2460609.6149233705, 2460609.6150352187], [2460609.615370763, 2460609.615482611], [2460609.616265548, 2460609.616377396], [2460609.6169366366, 2460609.6170484847], [2460609.6176077253, 2460609.618055118], [2460609.6190617504, 2460609.6192854466], [2460609.6200683834, 2460609.6201802315], [2460609.6204039278, 2460609.620515776], [2460609.6218579533, 2460609.6219698014], [2460609.624206763, 2460609.6243186113], [2460609.6246541557, 2460609.624877852], [2460609.6256607887, 2460609.625772637], [2460609.6271148142, 2460609.6274503586], [2460609.628009599, 2460609.6281214473], [2460609.628792536, 2460609.628904384], [2460609.630134713, 2460609.630246561], [2460609.631365042, 2460609.6314768903], [2460609.636286359, 2460609.636621903], [2460609.637516688, 2460609.6379640806], [2460609.6389707136, 2460609.6390825617], [2460609.6429972453, 2460609.6432209415], [2460609.6460171444, 2460609.646464537], [2460609.647806714, 2460609.647918562], [2460609.6548531447, 2460609.655076841], [2460609.657201955, 2460609.6575374994], [2460609.6580967396, 2460609.6663734997]] freq_flags: [[47714233.3984375, 47836303.7109375], [47958374.0234375, 48080444.3359375], [49911499.0234375, 50155639.6484375], [62362670.8984375, 62606811.5234375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [112533569.3359375, 113021850.5859375], [113143920.8984375, 114120483.3984375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [123153686.5234375, 123275756.8359375], [124618530.2734375, 125350952.1484375], [126571655.2734375, 126815795.8984375], [127059936.5234375, 127426147.4609375], [127548217.7734375, 127670288.0859375], [128036499.0234375, 128280639.6484375], [128524780.2734375, 128768920.8984375], [129257202.1484375, 129379272.4609375], [129501342.7734375, 129623413.0859375], [129867553.7109375, 130355834.9609375], [130477905.2734375, 139022827.1484375], [139144897.4609375, 139877319.3359375], [139999389.6484375, 140731811.5234375], [140975952.1484375, 142684936.5234375], [142929077.1484375, 143417358.3984375], [143783569.3359375, 144027709.9609375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183212280.2734375, 183334350.5859375], [187484741.2109375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [191024780.2734375, 191757202.1484375], [196884155.2734375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199081420.8984375, 199447631.8359375], [201644897.4609375, 201889038.0859375], [204574584.9609375, 204818725.5859375], [204940795.8984375, 205429077.1484375], [207138061.5234375, 207382202.1484375], [207870483.3984375, 209335327.1484375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220687866.2109375, 220809936.5234375], [223007202.1484375, 223373413.0859375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [8, Jnn], [9, Jee], [15, Jnn], [16, Jee], [17, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [82, Jee], [82, Jnn], [83, Jnn], [84, Jnn], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [90, Jee], [90, Jnn], [92, Jee], [97, Jnn], [98, Jnn], [99, Jnn], [100, Jnn], [101, Jnn], [102, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jnn], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [125, Jee], [125, Jnn], [127, Jee], [130, Jee], [130, Jnn], [131, Jee], [132, Jee], [132, Jnn], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [137, Jnn], [142, Jnn], [148, Jee], [161, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [184, Jee], [185, Jee], [185, Jnn], [186, Jee], [186, Jnn], [187, Jee], [187, Jnn], [188, Jnn], [189, Jee], [189, Jnn], [191, Jee], [193, Jee], [194, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [206, Jee], [207, Jee], [207, Jnn], [208, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [218, Jnn], [231, Jee], [232, Jee], [234, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 161.87 minutes.